LOUISIANA COMMERCIAL DRIVER'S LICENSE MANUAL CDL Study Manual COPYRIGHT AAMVA All Rights Reserved Revised Version 2005 ### **CDL REQUIREMENTS** ### **INITIAL ISSUANCE:** - Valid picture driver's license - Supplemental Application Form (DPSMV 2211) Enclosure A - Current, complete Physical Examination (DPSMV 2219) or it's equivalent - Proof of liability insurance on personally owned vehicle/s - Proof of Social Security number - Application fee is \$15 (cash only) due at the time of application - Upon passing required test/s, applicant will be issued a 60 day learner's permit. - Applicant is required to make an appointment with a CDL Third Party Examiner for administration of the skills test (pre-trip inspection, basic controls and road driving). A list of CDL Third Party Examiner's is available at any Office of Motor Vehicles location. - Upon successful completion of the skills test, the Examiner will issue a Certificate of Successful Completion and place it in a sealed envelope to be presented to the CDL office for issuance. Tampering with this envelope may result in invalidation of your test. ### **CDL RENEWALS:** - CDL driver's license - Current, complete Physical Examination (DPSMV 2219) or it's equivalent - Proof of liability insurance on personally owned vehicle/s - Testing is required for renewal of Hazardous Materials endorsement. Hazmat testing is only conducted at a full-service CDL issuing office. - Fingerprint background check must be within most recent 180 days. ### Fees (Cash only): - Application fee (initial and renewal) \$15.00 - CDL driver's license fee \$41.00 (\$51.00 for Orleans parish) - Endorsements \$5.00 each - Parish fee (if applicable) up to \$3.00 ### **Questions:** 1-225-925-6146 or www.expresslane.org # Section 1 INTRODUCTION ### **This Section Covers** - Commercial Driver License Tests - Driver Disqualifications - Other Safety Rules There is a federal requirement that each state have minimum standards for the licensing of commercial drivers. This manual provides driver license testing information for drivers who wish to have a commercial driver license (CDL). This manual does NOT provide information on all the federal and state requirements needed before you can drive a commercial motor vehicle (CMV). You may have to contact your state driver licensing authority for additional information. You must have a CDL to operate: Any single vehicle with a gross vehicle weight rating (GVWR) of 26,001 pounds or more. A combination vehicle with a gross combination weight rating of 26,001 or more pounds, if the trailer(s) has a GVWR of 10,001 or more pounds. A vehicle designed to transport 16 or more passengers (including the driver). Any size vehicle which requires hazardous material placards or is carrying material listed as a select agent or toxin in 42 CFR part 73. Federal regulations through the Department of Homeland Security require a background check and fingerprinting for the Hazardous Materials endorsement. Contact your local department of driver licensing for more information. (Your state may have additional definitions of CMVs.) To get a CDL, you must pass knowledge and skills tests. This manual will help you pass the tests. This manual is not a substitute for a truck driver training class or program. Formal training is the most reliable way to learn the many special skills required for safely driving a large commercial vehicle and becoming a professional driver in the trucking industry. Figure 1.1 helps you determine if you need a CDL ### Do You Need a CDL? NOTE: A bus may be Class A, B, or C depending on whether the GVWR is over 26,001 pounds or is a combination vehicle. Figure 1.1 ### 1.1 - Commercial Driver License Tests ### 1.1.1 - Knowledge Tests You will have to take one or more knowledge tests, depending on what class of license and what endorsements you need. The CDL knowledge tests include: The general knowledge test, taken by all applicants. The passenger transport test, taken by all bus driver applicants. The air brakes test, which you must take if your vehicle has air brakes, including air over hydraulic brakes. The combination vehicles test, which is required if you want to drive combination vehicles. The hazardous materials test, required if you want to haul hazardous materials as defined in 49 CFR 383.5. In order to obtain this endorsement you are also required to pass a Transportation Security Administration (TSA) background check. The tanker test, required if you want to haul a liquid or liquid gas in a permanently mounted cargo tank rated at 119 gallons or more or a portable tank rated at 1,000 gallons or more. The doubles/triples test, required if you want to pull double or triple trailers. The School Bus test, required if you want to drive a school bus. ### 1.1.2 - Skills Tests If you pass the required knowledge test(s), you can take the CDL skills tests. There are three types of general skills that will be tested: pre-trip inspection, basic vehicle control, and on-road driving. You must take these tests in the type of vehicle for which you wish to be licensed. Any vehicle that has components marked or labeled cannot be used for the Pre-Trip Inspection Test. **Pre-trip Vehicle Inspection.** You will be tested to see if you know whether your vehicle is safe to drive. You will be asked to do a pre-trip inspection of your vehicle and explain to the examiner what you would inspect and why. Basic Vehicle Control. You will be tested on your skill to control the vehicle. You will be asked to move your vehicle forward, backward, and turn it within a defined area. These areas may be marked with traffic lanes, cones, barriers, or something similar. The examiner will tell you how each control test is to be done. **On-road Test.** You will be tested on your skill to safely drive your vehicle in a variety of traffic situations. The situations may include left and right turns, intersections, railroad crossings, curves, up and down grades, single or multi-lane roads, streets, or highways. The examiner will tell you where to drive. Figure 1.2 details which sections of this manual you should study for each particular class of license and for each endorsement. | What Sections Should You Study? | | | | | | | | | | |---------------------------------|----|-----------------|---------|---------|------------------------|-----------------|---------------|-----------|------------| | | | LICENSE
TYPE | | | ENDORSEMENT | | | | | | | | Class A | Class B | Class C | Hazardous
Materials | Double / Triple | Tank Vehicles | Passenger | School Bus | | Sections to Study | 1 | Χ | Х | Х | | | | | | | | 2 | Х | Х | Х | | Χ | Χ | Х | | | | 3 | Х | Х | Х | | | | | | | | 4 | | | | | | | Х | | | | 5* | Х | Х | Х | | Х | | | | | | 6 | Х | | | | X | Х | | | | | 7 | | | | | X | | | | | | 8 | | | | | | X | | | | | 9 | | | | Х | | Χ | | | | | 10 | | | | | | | | Х | | | 11 | Χ | Χ | Χ | | | | Х | Χ | | | 12 | Χ | Χ | Х | | | | Х | Χ | | | 13 | Χ | Х | Х | | | | Χ | Χ | *Study section 5 if you plan to operate vehicles equipped with air brakes. Figure 1.2 – What to Study ### 1.2 - CDL Disqualifications ### 1.2.1 - General You may not drive a commercial motor vehicle if you are disqualified for any reason. # 1.2.2 – Alcohol, Leaving the Scene of an Accident, and Commission of a Felony It is illegal to operate a CMV if your blood alcohol concentration (BAC) is .04% or more. If you operate a CMV, you shall be deemed to have given your consent to alcohol testing. You will lose your CDL for at least one year for a first offense for: Driving a CMV if your blood alcohol concentration is .04% or higher. Driving a CMV under the influence of alcohol. Refusing to undergo blood alcohol testing. Driving a CMV while under the influence of a controlled substance. Leaving the scene of an accident involving a CMV. Committing a felony involving the use of a CMV. Driving a CMV when the CDL is suspended. Causing a fatality through negligent operation of a CMV. You will lose your CDL for at least three years if the offense occurs while you are operating a CMV that is placarded for hazardous materials. You will lose your CDL for life for a second offense. You will lose your CDL for life if you use a CMV to commit a felony involving controlled substances. You will be put out-of-service for 24 hours if you have any detectable amount of alcohol under .04%. You will be disqualified from operating a school bus for ten years if you refuse to undergo blood alcohol testing or upon a conviction of DWI, regardless of the type of vehicle driven at the time of offense. ### 1.2.3 - Serious Traffic Violations Serious traffic violations are excessive speeding (15 mph or more above the posted limit), reckless driving, improper or erratic lane changes, following a vehicle too closely, traffic offenses committed in a CMV in connection with fatal traffic accidents, driving a CMV without obtaining a CDL or having a CDL in the driver's possession, and driving a CMV without the proper class of CDL and/or endorsements. You will lose your CDL: For at least 60 days if you have committed two serious traffic violations within a three-year period involving a CMV. For at least 120 days for three or more serious traffic violations within a three-year period involving a CMV. ### 1.2.4 - Violation of Out-of-Service Orders You will lose your CDL: For at least 180 days if you have committed your first violation of an out-of-service order. For at least one year if you have committed two violations of an out-of-service order in a ten-year period. For at least three years if you have committed three or more violations of an out-of-service order in a ten-year period. # 1.2.5 – Railroad-highway Grade Crossing Violations You will lose your CDL: For at least 60 days for your first violation. For at least 120 days for your second violation within a three-year period. For at least one year for your third violation within a three-year period. These violations
include violation of a federal, state or local law or regulation pertaining to one of the following six offenses at a railroad-highway grade crossing: For drivers who are not required to always stop, failing to stop before reaching the crossing if the tracks are not clear. For drivers who are not required to always stop, failing to slow down and check that the tracks are clear of an approaching train. For drivers who are always required to stop, failing to stop before driving onto the crossing. For all drivers failing to have sufficient space to drive completely through the crossing without stopping. For all drivers failing to obey a traffic control device or the directions of an enforcement official at the crossing. For all drivers failing to negotiate a crossing because of insufficient undercarriage clearance. # 1.2.6 – Hazardous Materials Endorsement Background Check and Disqualifications If you require a hazardous materials endorsement you will be required to submit your fingerprints and be subject to a background check. You will be denied or you will lose your hazardous materials endorsement if you: Are not a lawful permanent resident of the United States. Renounce your United States citizenship. Are wanted or under indictment for certain felonies. Have a conviction in military or civilian court for certain felonies. Have been adjudicated as a mental defective or committed to a mental institution. Are considered to pose a security threat as determined by the Transportation Security Administration. The background check procedures vary from jurisdiction to jurisdiction. Your licensing agency will provide you with all the information you need to complete the required TSA background check procedures. # 1.2.7 – Traffic Violations in Your Personal Vehicle The Motor Carrier Safety Improvement Act (MCSIA) of 1999 requires a CDL holder to be disqualified from operating a commercial motor vehicle if the CDL holder has been convicted of certain types of moving violations in their personal vehicle. If your privilege to operate your personal vehicle is revoked, cancelled, or suspended due to violations of traffic control laws (other than parking violations) you will also lose your CDL driving privileges. If your privilege to operate your personal vehicle is revoked, cancelled, or suspended due to alcohol, controlled substance or felony violations, you will lose your CDL for 1 year. If you are convicted of a second violation in your personal vehicle or CMV you will lose your CDL for life. If your license to operate your personal vehicle is revoked, cancelled, or suspended you may not obtain a "hardship" license to operate a CMV. ### 1.3 - Other CDL Rules There are other federal and state rules that affect drivers operating CMVs in all states. Among them are: You cannot have more than one license. If you break this rule, a court may fine you up to \$5,000 or put you in jail and keep your home state license and return any others. You must notify your employer within 30 days of conviction for any traffic violations (except parking). This is true no matter what type of vehicle you were driving. You must notify your motor vehicle licensing agency within 30 days if you are convicted in any other jurisdiction of any traffic violation (except parking). This is true no matter what type of vehicle you were driving. You must notify your employer within two business days if your license is suspended, revoked, or canceled, or if you are disqualified from driving. You must give your employer information on all driving jobs you have held for the past 10 years. You must do this when you apply for a commercial driving job. No one can drive a commercial motor vehicle without a CDL. A court may fine you up to \$5,000 or put you in jail for breaking this rule. If you have a hazardous materials endorsement you must notify and surrender your hazardous materials endorsement to the state that issued your CDL within 24 hours of any conviction or indictment in any jurisdiction, civilian or military, for, or found not guilty by reason of insanity of a disqualifying crime listed in 49 CFR 1572.103; who is adjudicated as a mental defective or committed to a mental institution as specified in 49 CFR 1572.109; or who renounces his or her U. S. citizenship; Your employer may not let you drive a commercial motor vehicle if you have more than one license or if you're CDL is suspended or revoked. A court may fine the employer up to \$5,000 or put him/her in jail for breaking this rule. All states are connected to one computerized system to share information about CDL drivers. The states will check on drivers' accident records to be sure that drivers do not have more than one CDL. You must be properly restrained by a safety belt at all times while operating a commercial motor vehicle. The safety belt design holds the driver securely behind the wheel during a crash, helping the driver to control the vehicle and reduces the chance of serious injury or death. If you do not wear a safety belt, you are four times more likely to be fatally injured if you are thrown from the vehicle. Your state may have additional rules that you must also obey. # 1.4 – International Registration Plan International Fuel Tax Agreement If you operate a CDL required vehicle in interstate commerce, the vehicle, with few exceptions, is required to be registered under the International Registration Plan (IRP) and the International Fuel Tax Agreement (IFTA). These federally mandated programs provide for the equitable collection and distribution of vehicle license fees and motor fuels taxes for vehicles traveling throughout the 48 contiguous United States and 10 Canadian provinces. Under the IRP, jurisdictions must register apportioned vehicles which includes issuing license plates and cab cards or proper credentials, calculate, collect and distribute IRP fees, audit carriers for accuracy of reported distance and fees and enforce IRP requirements. Registrant responsibilities under the Plan include applying for IRP registration with base jurisdiction, providing proper documentation for registration, paying appropriate IRP registration fees, properly displaying registration credentials, maintaining accurate distance records, and making records available for jurisdiction review. The basic concept behind IFTA is to allow a licensee (motor carrier) to license in a base jurisdiction for the reporting and payment of motor fuel use taxes. Under the IFTA, a licensee is issued one set of credentials which will authorize operations through all IFTA member jurisdictions. The fuel use taxes collected pursuant to the IFTA are calculated based on the number of miles (kilometers) traveled and the number of gallons (liters) consumed in the member jurisdictions. The licensee files one quarterly tax return with the base jurisdiction by which the licensee will report all operations through all IFTA member jurisdictions. It is the base jurisdiction's responsibility to remit the taxes collected to other member jurisdictions and to represent the other member jurisdictions in the tax collection process, including the performance of audits. An IFTA licensee must retain records to support the information reported on the IFTA quarterly tax return # The IRP registrant and the IFTA licensee may be the vehicle owner or the vehicle operator. The requirement for acquiring IRP plates for a vehicle and IFTA license for a motor carrier is determined by the definitions from the IRP Plan and the IFTA for Qualified Vehicle and Qualified Motor Vehicle: ### For purposes of IRP: A Qualified Vehicle is (except as provided below) any Power Unit that is used or intended for use in two or more Member Jurisdictions and that is used for the transportation of persons for hire or designed, used, or maintained primarily for the transportation of property, and: - (i) has two Axles and a gross Vehicle weight or registered gross Vehicle weight in excess of 26,000 pounds (11,793.401 kilograms), or - (ii) has three or more Axles, regardless of weight, or - (iii) is used in combination, when the gross Vehicle weight of such combination exceeds 26,000 pounds (11,793.401 kilograms). # Section 2 DRIVING SAFELY ### **This Section Covers** - Vehicle Inspection - Basic Control of Your Vehicle - Shifting Gears - Seeing - Communicating - Space Management - Controlling Your Speed - Seeing Hazards - Distracted Driving - Aggressive Drivers/Road Rage - Night Driving - Driving in Fog - Winter Driving - Hot Weather Driving - Railroad-highway Crossings - Mountain Driving - Driving Emergencies - Antilock Braking Systems - Skid Control and Recovery - Accident Procedures - Fires - Alcohol, Other Drugs, and Driving - Staying Alert and Fit to Drive - Hazardous Materials Rules This section contains knowledge and safe driving information that all commercial drivers should know. You must pass a test on this information to get a CDL. This section does not have specific information on air brakes, combination vehicles, doubles, or passenger vehicles. When preparing for the Pre-trip Inspection Test, you must review the material in Section 11 in addition to the information in this section. This section does have basic information on hazardous materials (HazMat) that all drivers should know. If you need a HazMat endorsement, you should study Section 9. ### 2.1 - Vehicle Inspection ### 2.1.1 - Why Inspect Safety is the most important reason you inspect your vehicle, safety for yourself and for other road users. A vehicle defect found during an inspection could save you problems later. You could have a breakdown on the road that will cost time and dollars, or even worse, a crash caused by the defect. Federal and state laws require that drivers inspect their vehicles. Federal and state inspectors also may inspect your vehicles. If they judge the vehicle to be unsafe, they will put it "out of service" until it is fixed. ### 2.1.2 - Types of Vehicle Inspection **Pre-trip
Inspection.** A pre-trip inspection will help you find problems that could cause a crash or breakdown. During a Trip. For safety you should: Watch gauges for signs of trouble. Use your senses to check for problems (look, listen, smell, feel). Check critical items when you stop: - Tires, wheels and rims. - Brakes. - · Lights and reflectors. - Brake and electrical connections to trailer. - Trailer coupling devices. - Cargo securement devices. After-trip Inspection and Report. You should do an after-trip inspection at the end of the trip, day, or tour of duty on each vehicle you operated. It may include filling out a vehicle condition report listing any problems you find. The inspection report helps a motor carrier know when the vehicle needs repairs. ### 2.1.3 - What to Look For ### **Tire Problems** Too much or too little air pressure. Bad wear. You need at least 4/32-inch tread depth in every major groove on front tires. You need 2/32 inch on other tires. No fabric should show through the tread or sidewall. Cuts or other damage. Tread separation. Dual tires that come in contact with each other or parts of the vehicle. Mismatched sizes. Radial and bias-ply tires used together. Cut or cracked valve stems. Regrooved, recapped, or retreaded tires on the front wheels of a bus. These are prohibited. ### Wheel and Rim Problems Damaged rims. Rust around wheel nuts may mean the nuts are loose--check tightness. After a tire has been changed, stop a short while later and re-check tightness of nuts. Missing clamps, spacers, studs, or lugs means danger. Mismatched, bent, or cracked lock rings are dangerous. Wheels or rims that have had welding repairs are not safe. ### **Bad Brake Drums or Shoes** Cracked drums. Shoes or pads with oil, grease, or brake fluid on them. Shoes worn dangerously thin, missing, or broken. ### **Steering System Defects** Missing nuts, bolts, cotter keys, or other parts. Bent, loose, or broken parts, such as steering column, steering gear box, or tie rods. If power steering equipped, check hoses, pumps, and fluid level; check for leaks. Steering wheel play of more than 10 degrees (approximately 2 inches movement at the rim of a 20-inch steering wheel) can make it hard to steer. **Suspension System Defects.** The suspension system holds up the vehicle and its load. It keeps the axles in place. Therefore, broken suspension parts can be extremely dangerous. Look for: Spring hangers that allow movement of axle from proper position. See Figure 2.2. Cracked or broken spring hangers. Missing or broken leaves in any leaf spring. If one-fourth or more are missing, it will put the vehicle "out of service", but any defect could be dangerous. See Figure 2.3. Broken leaves in a multi-leaf spring or leaves that have shifted so they might hit a tire or other part. Leaking shock absorbers. Torque rod or arm, u-bolts, spring hangers, or other axle positioning parts that are cracked, damaged, or missing. Air suspension systems that are damaged and/or leaking. See Figure 2.4. Any loose, cracked, broken, or missing frame members. Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4 **Exhaust System Defects.** A broken exhaust system can let poison fumes into the cab or sleeper berth. Look for: Loose, broken, or missing exhaust pipes, mufflers, tailpipes, or vertical stacks. Loose, broken, or missing mounting brackets, clamps, bolts, or nuts. Exhaust system parts rubbing against fuel system parts, tires, or other moving parts of vehicle. Exhaust system parts that are leaking. **Emergency Equipment.** Vehicles must be equipped with emergency equipment. Look for: Fire extinguisher(s). Spare electrical fuses (unless equipped with circuit breakers). Warning devices for parked vehicles (for example, three reflective warning triangles or 6 fusees or 3 liquid burning flares). **Cargo (Trucks).** You must make sure the truck is not overloaded and the cargo is balanced and secured before each trip. If the cargo contains hazardous materials, you must inspect for proper papers and placarding. ### 2.1.4 - CDL Pre-trip Vehicle Inspection Test In order to obtain a CDL you will be required to pass a pre-trip vehicle inspection test. You will be tested to see if you know whether your vehicle is safe to drive. You will be asked to do a pre-trip inspection of your vehicle and explain to the examiner what you would inspect and why. The following seven-step inspection method should be useful. ### 2.1.5 - Seven-step Inspection Method **Method of Inspection.** You should do a pre-trip inspection the same way each time so you will learn all the steps and be less likely to forget something. Approaching the Vehicle. Notice general condition. Look for damage or vehicle leaning to one side. Look under the vehicle for fresh oil, coolant, grease, or fuel leaks. Check the area around the vehicle for hazards to vehicle movement (people, other vehicles, objects, low-hanging wires, limbs, etc.). ### **Vehicle Inspection Guide** ### **Step 1: Vehicle Overview** Review Last Vehicle Inspection Report. Drivers may have to make a vehicle inspection report in writing each day. The motor carrier must repair any items in the report that affect safety and certify on the report that repairs were made or were unnecessary. You must sign the report only if defects were noted and certified to be repaired or not needed to be repaired. ### **Step 2: Check Engine Compartment** Check That the Parking Brakes Are On and/or Wheels Chocked. You may have to raise the hood, tilt the cab (secure loose things so they don't fall and break something), or open the engine compartment door. Check the following: Engine oil level. Coolant level in radiator; condition of hoses. Power steering fluid level; hose condition (if so equipped). Windshield washer fluid level. Battery fluid level, connections, and tie downs (battery may be located elsewhere). Automatic transmission fluid level (may require engine to be running). Check belts for tightness and excessive wear (alternator, water pump, air compressor)--learn how much "give" the belts should have when adjusted right, and check each one. Leaks in the engine compartment (fuel, coolant, oil, power steering fluid, hydraulic fluid, battery fluid). Cracked, worn electrical wiring insulation. Lower and secure hood, cab, or engine compartment door. ### Step 3: Start Engine and Inspect Inside the Cab ### **Get In and Start Engine** Make sure parking brake is on. Put gearshift in neutral (or "park" if automatic). Start engine; listen for unusual noises. If equipped, check the Anti-lock Braking System (ABS) indicator lights. Light on dash should come on and then turn off. If it stays on the ABS is not working properly. For trailers only, if the yellow light on the left rear of the trailer stays on, the ABS is not working properly. ### Look at the Gauges Oil pressure. Should come up to normal within seconds after engine is started. See Figure 2.5 Air pressure. Pressure should build from 50 to 90 psi within 3 minutes. Build air pressure to governor cut-out (usually around 120 – 140 psi. Know your vehicles requirements. Ammeter and/or voltmeter. Should be in normal range(s). Coolant temperature. Should begin gradual rise to normal operating range. Engine oil temperature. Should begin gradual rise to normal operating range. Warning lights and buzzers. Oil, coolant, charging circuit warning, and antilock brake system lights should go out right away. **Check Condition of Controls.** Check all of the following for looseness, sticking, damage, or improper setting: Steering wheel. Clutch. Accelerator ("gas pedal"). Brake controls. - Foot brake. - Trailer brake (if vehicle has one). - · Parking brake. - Retarder controls (if vehicle has them). Transmission controls. Interaxle differential lock (if vehicle has one). Horn(s). Windshield wiper/washer. ### Lights. - · Headlights. - · Dimmer switch. - Turn signal. - Four-way flashers. - Parking, clearance, identification, marker switch(es). ### OIL PRESSURE Idling 5-20 PSI Operating 35-75 PSI Low, Dropping, Fluctuating: ### STOP IMMEDIATELY! Without oil the engine can be destroyed rapidly Figure 2.5 **Check Mirrors and Windshield.** Inspect mirrors and windshield for cracks, dirt, illegal stickers, or other obstructions to seeing clearly. Clean and adjust as necessary. ### **Check Emergency Equipment** Check for safety equipment: - Spare electrical fuses (unless vehicle has circuit breakers). - Three red reflective triangles, 6 fusees or 3 liquid burning flares. - Properly charged and rated fire extinguisher. Check for optional items such as: - Chains (where winter conditions require). - Tire changing equipment. - List of emergency phone numbers - Accident reporting kit (packet). **Check Safety Belt.** Check that the safety belt is securely mounted, adjusts, latches properly and is not ripped or frayed. ### Step 4: Turn Off Engine and Check Lights Make sure the parking brake is set, turn off the engine, and take the key with you. Turn on headlights (low beams) and four-way emergency flashers, and get out of the vehicle. ### Step 5: Do Walkaround Inspection Go to front of vehicle and check that low beams are on and both of the four-way flashers are working. Push dimmer switch and check that high beams work. Turn off headlights and four-way emergency flashers. Turn on parking, clearance, side-marker, and identification lights. Turn on right turn signal, and start walk-around inspection. ### General Walkaround and inspect. Clean all lights, reflectors, and glass as you go along. ### **Left Front Side** Driver's door glass should be clean. Door latches or locks should work properly. Left front wheel. - Condition of wheel and rim--missing, bent, broken studs, clamps, lugs, or any signs of misalignment. - Condition of tires--properly inflated, valve stem and cap OK, no serious cuts, bulges, or tread wear. - Use wrench to test rust-streaked lug nuts, indicating looseness. - · Hub oil level OK, no leaks. Left front
suspension. - Condition of spring, spring hangers, shackles, u-bolts. - Shock absorber condition. Left front brake. - · Condition of brake drum or disc. - Condition of hoses. ### Front Condition of front axle. Condition of steering system. - No loose, worn, bent, damaged or missing parts. - Must grab steering mechanism to test for looseness. Condition of windshield. - Check for damage and clean if dirty. - Check windshield wiper arms for proper spring tension. - Check wiper blades for damage, "stiff" rubber, and securement. Lights and reflectors. - Parking, clearance, and identification lights clean, operating, and proper color (amber at front). - Reflectors clean and proper color (amber at front). - Right front turn signal light clean, operating, and proper color (amber or white on signals facing forward). ### Right Side Right front: check all items as done on left front. Primary and secondary safety cab locks engaged (if cab-over-engine design). Right fuel tank(s). - · Securely mounted, not damaged, or leaking. - Fuel crossover line secure. - Tank(s) contain enough fuel. - Cap(s) on and secure. Condition of visible parts. - Rear of engine--not leaking. - Transmission--not leaking. - Exhaust system--secure, not leaking, not touching wires, fuel, or air lines. - Frame and cross members--no bends or cracks. - Air lines and electrical wiring--secured against snagging, rubbing, wearing. - Spare tire carrier or rack not damaged (if so equipped). - Spare tire and/or wheel securely mounted in rack. - Spare tire and wheel adequate (proper size, properly inflated). Cargo securement (trucks). - Cargo properly blocked, braced, tied, chained, etc. - Header board adequate, secure (if required). - Side boards, stakes strong enough, free of damage, properly set in place (if so equipped). - Canvas or tarp (if required) properly secured to prevent tearing, billowing, or blocking of mirrors. - If oversize, all required signs (flags, lamps, and reflectors) safely and properly mounted and all required permits in driver's possession. - Curbside cargo compartment doors in good condition, securely closed, latched/locked and required security seals in place. ### Right Rear Condition of wheels and rims--no missing, bent, or broken spacers, studs, clamps, or lugs. Condition of tires--properly inflated, valve stems and caps OK, no serious cuts, bulges, tread wear, tires not rubbing each other, and nothing stuck between them. Tires same type, e.g., not mixed radial and bias types. Tires evenly matched (same sizes). Wheel bearing/seals not leaking. ### Suspension. - Condition of spring(s), spring hangers, shackles, and u-bolts. - Axle secure. - Powered axle(s) not leaking lube (gear oil). - Condition of torque rod arms, bushings. - Condition of shock absorber(s). - If retractable axle equipped, check condition of lift mechanism. If air powered, check for leaks. - Condition of air ride components. ### Brakes. - · Brake adjustment. - Condition of brake drum(s) or discs. - Condition of hoses--look for any wear due to rubbing. Lights and reflectors. - Side-marker lights clean, operating, and proper color (red at rear, others amber). - Side-marker reflectors clean and proper color (red at rear, others amber). ### Rear Lights and reflectors. - Rear clearance and identification lights clean, operating, and proper color (red at rear). - Reflectors clean and proper color (red at rear). - Taillights clean, operating, and proper color (red at rear). - Right rear turn signal operating, and proper color (red, yellow, or amber at rear). License plate(s) present, clean, and secured. Splash guards present, not damaged, properly fastened, not dragging on ground, or rubbing tires. Cargo secure (trucks). Cargo properly blocked, braced, tied, chained, etc. Tailboards up and properly secured. End gates free of damage, properly secured in stake sockets. Canvas or tarp (if required) properly secured to prevent tearing, billowing, or blocking of either the rearview mirrors or rear lights. If over-length, or over-width, make sure all signs and/or additional lights/flags are safely and properly mounted and all required permits are in driver's possession. Rear doors securely closed, latched/locked. ### Left Side Check all items as done on right side, plus: - Battery(ies) (if not mounted in engine compartment). - Battery box(es) securely mounted to vehicle. Section 2 – Driving Safely - Box has secure cover. - Battery(ies) secured against movement. - Battery(ies) not broken or leaking. - Fluid in battery(ies) at proper level (except maintenance-free type). - Cell caps present and securely tightened (except maintenance-free type). - Vents in cell caps free of foreign material (except maintenance-free type). ### Step 6: Check Signal Lights ### Get In and Turn Off Lights Turn off all lights. Turn on stop lights (apply trailer hand brake or have a helper put on the brake pedal). Turn on left turn signal lights. ### **Get Out and Check Lights** Left front turn signal light clean, operating and proper color (amber or white on signals facing the front). Left rear turn signal light and both stop lights clean, operating, and proper color (red, yellow, or amber). ### **Get In Vehicle** Turn off lights not needed for driving. Check for all required papers, trip manifests, permits, etc. Secure all loose articles in cab (they might interfere with operation of the controls or hit you in a crash). Start the engine. ### Step 7: Start the Engine and Check **Test for Hydraulic Leaks.** If the vehicle has hydraulic brakes, pump the brake pedal three times. Then apply firm pressure to the pedal and hold for five seconds. The pedal should not move. If it does, there may be a leak or other problem. Get it fixed before driving. If the vehicle has air brakes, do the checks described in Sections 5 and 6 of this manual. ### **Brake System** ### **Test Parking Brake(s)** Fasten safety belt Set parking brake (power unit only). Release trailer parking brake (if applicable). Place vehicle into a low gear. Gently pull forward against parking brake to make sure the parking brake holds. Repeat the same steps for the trailer with trailer parking brake set and power unit parking brakes released (if applicable). If it doesn't hold vehicle, it is faulty; get it fixed. ### **Test Service Brake Stopping Action** Go about five miles per hour. Push brake pedal firmly "Pulling" to one side or the other can mean brake trouble. Any unusual brake pedal "feel" or delayed stopping action can mean trouble. If you find anything unsafe during the pre-trip inspection, get it fixed. Federal and state laws forbid operating an unsafe vehicle. ### 2.1.6 – Inspection During a Trip ### **Check Vehicle Operation Regularly** You should check: Instruments. Air pressure gauge (if you have air brakes). Temperature gauges. Pressure gauges. Ammeter/voltmeter. Mirrors. Tires. Cargo, cargo covers. Lights. Etc. If you see, hear, smell, or feel anything that might mean trouble, check it out. **Safety Inspection.** Drivers of trucks and truck tractors when transporting cargo must inspect the securement of the cargo within the first 50 miles of a trip and every 150 miles or every three hours (whichever comes first) after. ### 2.1.7 – After-trip Inspection and Report You may have to make a written report each day on the condition of the vehicle(s) you drove. Report anything affecting safety or possibly leading to mechanical breakdown. # Subsection 2.1 Test Your Knowledge The vehicle inspection report tells the motor carrier about problems that may need fixing. Keep a copy of your report in the vehicle for one day. That way, the next driver can learn about any problems you have found. - 1. What is the most important reason for doing a vehicle inspection? - 2. What things should you check during a trip? - Name some key steering system parts. - 4. Name some suspension system defects. - 5. What three kinds of emergency equipment must you have? - 6. What is the minimum tread depth for front tires? For other tires? - 7. Name some things you should check on the front of your vehicle during the walk around inspection. - 8. What should wheel bearing seals be checked for? - 9. How many red reflective triangles should you carry? - 10. How do you test hydraulic brakes for leaks? - 11. Why put the starter switch key in your pocket during the pre-trip inspection? These questions may be on your test. If you can't answer them all, re-read subsection 2.1. ### 2.2 - Basic Control of Your Vehicle To drive a vehicle safely, you must be able to control its speed and direction. Safe operation of a commercial vehicle requires skill in: Accelerating. Steering. Stopping. Backing safely. Fasten your seatbelt when on the road. Apply the parking brake when you leave your vehicle. ### 2.2.1 - Accelerating Don't roll back when you start. You may hit someone behind you. If you have a manual transmission vehicle, partly engage the clutch before you take your right foot off the brake. Put on the parking brake whenever necessary to keep from rolling back. Release the parking brake only when you have applied enough engine power to keep from rolling back. On a tractor-trailer equipped with a trailer brake hand valve, the hand valve can be applied to keep from rolling back. Speed up smoothly and gradually so the vehicle does not jerk. Rough acceleration can cause mechanical damage. When pulling a trailer, rough acceleration can damage the coupling. Speed up very gradually when traction is poor, as in rain or snow. If you use too much power, the drive wheels may spin. You could lose control. If the drive wheels begin to spin, take your foot off the accelerator. ### 2.2.2 - Steering Hold the steering wheel firmly with both hands. Your hands should be on opposite sides of the wheel. If you hit a curb or a pothole (chuckhole), the wheel could pull away from your hands unless you have a firm hold. ### 2.2.3 - Stopping Push the brake pedal down gradually. The amount of brake
pressure you need to stop the vehicle will depend on the speed of the vehicle and how quickly you need to stop. Control the pressure so the vehicle comes to a smooth, safe stop. If you have a manual transmission, push the clutch in when the engine is close to idle. ### 2.2.4 – Backing Safely Because you cannot see everything behind your vehicle, backing is always dangerous. Avoid backing whenever you can. When you park, try to park so you will be able to pull forward when you leave. When you have to back, here are a few simple safety rules: Start in the proper position. Look at your path. Use mirrors on both sides. Back slowly. Back and turn toward the driver's side whenever possible. Use a helper whenever possible. These rules are discussed in turn below. **Start in the Proper Position.** Put the vehicle in the best position to allow you to back safely. This position will depend on the type of backing to be done. Look at Your Path. Look at your line of travel before you begin. Get out and walk around the vehicle. Check your clearance to the sides and overhead, in and near the path your vehicle will take. **Use Mirrors on Both Sides.** Check the outside mirrors on both sides frequently. Get out of the vehicle and check your path if you are unsure. **Back Slowly.** Always back as slowly as possible. Use the lowest reverse gear. That way you can more easily correct any steering errors. You also can stop quickly if necessary. Back and Turn Toward the Driver's Side. Back to the driver's side so you can see better. Backing toward the right side is very dangerous because you can't see as well. If you back and turn toward the driver's side, you can watch the rear of your vehicle by looking out the side window. Use driver-side backing--even if it means going around the block to put your vehicle in this position. The added safety is worth it. **Use a Helper.** Use a helper when you can. There are blind spots you can't see. That's why a helper is important. The helper should stand near the back of your vehicle where you can see the helper. Before you begin backing, work out a set of hand signals that you both understand. Agree on a signal for "stop." ### 2.3 - Shifting Gears Correct shifting of gears is important. If you can't get your vehicle into the right gear while driving, you will have less control. ### 2.3.1 - Manual Transmissions **Basic Method for Shifting Up.** Most heavy vehicles with manual transmissions require double clutching to change gears. This is the basic method: Release accelerator, push in clutch and shift to neutral at the same time. Release clutch. Let engine and gears slow down to the rpm required for the next gear (this takes practice). Push in clutch and shift to the higher gear at the same time. Release clutch and press accelerator at the same time. Shifting gears using double clutching requires practice. If you remain too long in neutral, you may have difficulty putting the vehicle into the next gear. If so, don't try to force it. Return to neutral, release clutch, increase engine speed to match road speed, and try again. **Knowing When to Shift Up.** There are two ways of knowing when to shift: Use Engine Speed (rpm). Study the driver's manual for your vehicle and learn the operating rpm range. Watch your tachometer, and shift up when your engine reaches the top of the range. (Some newer vehicles use "progressive" shifting: the rpm at which you shift becomes higher as you move up in the gears. Find out what's right for the vehicle you will operate.) **Use Road Speed (mph).** Learn what speeds each gear is good for. Then, by using the speedometer, you'll know when to shift up. With either method, you may learn to use engine sounds to know when to shift. ### **Basic Procedures for Shifting Down** Release accelerator, push in clutch, and shift to neutral at the same time. Release clutch. Press accelerator, increase engine and gear speed to the rpm required in the lower gear. Push in clutch and shift to lower gear at the same time. Release clutch and press accelerator at the same time. Downshifting, like upshifting, requires knowing when to shift. Use either the tachometer or the speedometer and downshift at the right rpm or road speed. Special conditions where you should downshift are: **Before Starting Down a Hill.** Slow down and shift down to a speed that you can control without using the brakes hard. Otherwise the brakes can overheat and lose their braking power. Downshift before starting down the hill. Make sure you are in a low enough gear, usually lower than the gear required to climb the same hill. **Before Entering a Curve.** Slow down to a safe speed, and downshift to the right gear before entering the curve. This lets you use some power through the curve to help the vehicle be more stable while turning. It also allows you to speed up as soon as you are out of the curve. # 2.3.2 – Multi-speed Rear Axles and Auxiliary Transmissions Multi-speed rear axles and auxiliary transmissions are used on many vehicles to provide extra gears. You usually control them by a selector knob or switch on the gearshift lever of the main transmission. There are many different shift patterns. Learn the right way to shift gears in the vehicle you will drive. ### 2.3.3 - Automatic Transmissions Some vehicles have automatic transmissions. You can select a low range to get greater engine braking when going down grades. The lower ranges prevent the transmission from shifting up beyond the selected gear (unless the governor rpm is exceeded). It is very important to use this braking effect when going down grades. ### 2.3.4 - Retarders Some vehicles have "retarders." Retarders help slow a vehicle, reducing the need for using your brakes. They reduce brake wear and give you another way to slow down. There are four basic types of retarders (exhaust, engine, hydraulic, and electric). All retarders can be turned on or off by the driver. On some vehicles the retarding power can be adjusted. When turned "on," retarders apply their braking power (to the drive wheels only) whenever you let up on the accelerator pedal all the way. Because these devices can be noisy, be sure you know where their use is permitted. **Caution.** When your drive wheels have poor traction, the retarder may cause them to skid. Therefore, you should turn the retarder off whenever the road is wet, icy, or snow covered. # Subsections 2.2 and 2.3 Test Your Knowledge - Why should you back toward the driver's side? - 2. If stopped on a hill, how can you start moving without rolling back? - When backing, why is it important to use a helper? - 4. What's the most important hand signal that you and the helper should agree on? - 5. What are the two special conditions where you should downshift? - 6. When should you downshift automatic transmissions? - 7. Retarders keep you from skidding when the road is slippery. True or False? - What are the two ways to know when to shift? These questions may be on the test. If you can't answer them all, re-read subsections 2.2 and 2.3. ### 2.4 - Seeing To be a safe driver you need to know what's going on all around your vehicle. Not looking properly is a major cause of accidents. ### 2.4.1 - Seeing Ahead All drivers look ahead; but many don't look far enough ahead. Importance of Looking Far Enough Ahead. Because stopping or changing lanes can take a lot of distance, knowing what the traffic is doing on all sides of you is very important. You need to look well ahead to make sure you have room to make these moves safely. How Far Ahead to Look. Most good drivers look at least 12 to 15 seconds ahead. That means looking ahead the distance you will travel in 12 to 15 seconds. At lower speeds, that's about one block. At highway speeds it's about a quarter of a mile. If you're not looking that far ahead, you may have to stop too quickly or make quick lane changes. Looking 12 to 15 seconds ahead doesn't mean not paying attention to things that are closer. Good drivers shift their attention back and forth, near and far. Figure 2.6 illustrates how far to look ahead. Figure 2.6 Look for Traffic. Look for vehicles coming onto the highway, into your lane, or turning. Watch for brake lights from slowing vehicles. By seeing these things far enough ahead, you can change your speed, or change lanes if necessary to avoid a problem. If a traffic light has been green for a long time it will probably change before you get there. Start slowing down and be ready to stop. ### 2.4.2 - Seeing to the Sides and Rear It's important to know what's going on behind and to the sides. Check your mirrors regularly. Check more often in special situations. Mirror Adjustment. Mirror adjustment should be checked prior to the start of any trip and can only be checked accurately when the trailer(s) are straight. You should check and adjust each mirror to show some part of the vehicle. This will give you a reference point for judging the position of the other images. **Regular Checks.** You need to make regular checks of your mirrors to be aware of traffic and to check your vehicle. **Traffic.** Check your mirrors for vehicles on either side and in back of you. In an emergency, you may need to know whether you can make a quick lane change. Use your mirrors to spot overtaking vehicles. There are "blind spots" that your mirrors cannot show you. Check your mirrors regularly to know where other vehicles are around you, and to see if they move into your blind spots. **Check Your Vehicle.** Use the mirrors to keep an eye on your tires. It's one way to spot a tire fire. If you're carrying open cargo, you can use the mirrors to check it. Look for loose straps, ropes, or chains. Watch for a flapping or ballooning tarp. **Special Situations.** Special situations require more than regular mirror checks. These are lane changes, turns, merges, and tight maneuvers. **Lane Changes.** You need to check your mirrors to make sure no one is alongside you or about to pass you.
Check your mirrors: Before you change lanes to make sure there is enough room. After you have signaled, to check that no one has moved into your blind spot. Right after you start the lane change, to doublecheck that your path is clear. After you complete the lane change. **Turns.** In turns, check your mirrors to make sure the rear of your vehicle will not hit anything. **Merges.** When merging, use your mirrors to make sure the gap in traffic is large enough for you to enter safely. **Tight Maneuvers.** Any time you are driving in close quarters, check your mirrors often. Make sure you have enough clearance. **How to Use Mirrors.** Use mirrors correctly by checking them quickly and understanding what you see. When you use your mirrors while driving on the road, check quickly. Look back and forth between the mirrors and the road ahead. Don't focus on the mirrors for too long. Otherwise, you will travel quite a distance without knowing what's happening ahead. Many large vehicles have curved (convex, "fisheye," "spot," "bugeye") mirrors that show a wider area than flat mirrors. This is often helpful. But everything appears smaller in a convex mirror than it would if you were looking at it directly. Things also seem farther away than they really are. It's important to realize this and to allow for it. Figure 2.7 shows the field of vision using a convex mirror. Figure 2.7 ### 2.5 - Communicating ### 2.5.1 – Signal Your Intentions Other drivers can't know what you are going to do until you tell them. Signaling what you intend to do is important for safety. Here are some general rules for signaling. **Turns.** There are three good rules for using turn signals: Signal early. Signal well before you turn. It is the best way to keep others from trying to pass you. Signal continuously. You need both hands on the wheel to turn safely. Don't cancel the signal until you have completed the turn. Cancel your signal. Don't forget to turn off your turn signal after you've turned (if you don't have self-canceling signals). Lane Changes. Put your turn signal on before changing lanes. Change lanes slowly and smoothly. That way a driver you didn't see may have a chance to honk his/her horn, or avoid your vehicle. **Slowing Down.** Warn drivers behind you when you see you'll need to slow down. A few light taps on the brake pedal -- enough to flash the brake lights -- should warn following drivers. Use the four-way emergency flashers for times when you are driving very slowly or are stopped. Warn other drivers in any of the following situations: Trouble Ahead. The size of your vehicle may make it hard for drivers behind you to see hazards ahead. If you see a hazard that will require slowing down, warn the drivers behind by flashing your brake lights. Tight Turns. Most car drivers don't know how slowly you have to go to make a tight turn in a large vehicle. Give drivers behind you warning by braking early and slowing gradually. Stopping on the Road. Truck and bus drivers sometimes stop in the roadway to unload cargo or passengers, or to stop at a railroad crossing. Warn following drivers by flashing your brake lights. Don't stop suddenly. Driving Slowly. Drivers often do not realize how fast they are catching up to a slow vehicle until they are very close. If you must drive slowly, alert following drivers by turning on your emergency flashers if it is legal. (Laws regarding the use of flashers differ from one state to another. Check the laws of the states where you will drive.) **Don't Direct Traffic.** Some drivers try to help out others by signaling when it is safe to pass. You should not do this. You could cause an accident. You could be blamed and it could cost you many thousands of dollars. ### 2.5.2 - Communicating Your Presence Other drivers may not notice your vehicle even when it's in plain sight. To help prevent accidents, let them know you're there. When Passing. Whenever you are about to pass a vehicle, pedestrian, or bicyclist, assume they don't see you. They could suddenly move in front of you. When it is legal, tap the horn lightly or, at night, flash your lights from low to high beam and back. And, drive carefully enough to avoid a crash even if they don't see or hear you. When It's Hard to See. At dawn, dusk, in rain, or snow, you need to make yourself easier to see. If you are having trouble seeing other vehicles, other drivers will have trouble seeing you. Turn on your lights. Use the headlights, not just the identification or clearance lights. Use the low beams; high beams can bother people in the daytime as well as at night. When Parked at the Side of the Road. When you pull off the road and stop, be sure to turn on the four-way emergency flashers. This is important at night. Don't trust the taillights to give warning. Drivers have crashed into the rear of a parked vehicle because they thought it was moving normally. If you must stop on a road or the shoulder of any road, you must put out your emergency warning devices within ten minutes. Place your warning devices at the following locations: If you must stop on or by a one-way or divided highway, place warning devices 10 feet, 100 feet, and 200 feet toward the approaching traffic. See Figure 2.8. If you stop on a two-lane road carrying traffic in both directions or on an undivided highway, place warning devices within 10 feet of the front or rear corners to mark the location of the vehicle and 100 feet behind and ahead of the vehicle, on the shoulder or in the lane you stopped in. See Figure 2.9. Figure 2.8 Figure 2.9 Back beyond any hill, curve, or other obstruction that prevents other drivers from seeing the vehicle within 500 feet. If line of sight view is obstructed due to hill or curve, move the rear-most triangle to a point back down the road so warning is provided. See Figure 2.10. Figure 2.10 When putting out the triangles, hold them between yourself and the oncoming traffic for your own safety. (So other drivers can see you.) **Use Your Horn When Needed.** Your horn can let others know you're there. It can help to avoid a crash. Use your horn when needed. However, it can startle others and could be dangerous when used unnecessarily. ### 2.6 - Controlling Speed Driving too fast is a major cause of fatal crashes. You must adjust your speed depending on driving conditions. These include traction, curves, visibility, traffic and hills. ### 2.6.1 - Stopping Distance Perception Distance + Reaction Distance + Braking Distance = Total Stopping Distance **Perception distance.** The distance your vehicle travels, in ideal conditions; from the time your eyes see a hazard until your brain recognizes it. Keep in mind certain mental and physical conditions can affect your perception distance. It can be affected greatly depending on visibility and the hazard itself. The average perception time for an alert driver is 1¾ seconds. At 55 mph this accounts for 142 feet traveled. **Reaction distance**. The distance you will continue to travel, in ideal conditions; before you physically hit the brakes, in response to a hazard seen ahead. The average driver has a reaction time of ³/₄ second to 1 second. At 55 mph this accounts for 61 feet traveled. **Braking distance**. The distance your vehicle will travel, in ideal conditions; while you are braking. At 55 mph on dry pavement with good brakes, it can take about 216 feet. **Total stopping distance**. The total minimum distance your vehicle has traveled, in ideal conditions; with everything considered, including perception distance, reaction distance and braking distance, until you can bring your vehicle to a complete stop. At 55 mph, your vehicle will travel a minimum of 419 feet. See Figure 2.11. Figure 2.11 ### The Effect of Speed on Stopping Distance. The faster you drive, the greater the impact or striking power of your vehicle. When you double your speed from 20 to 40 mph the impact is 4 times greater. The braking distance is also 4 times longer. Triple the speed from 20 to 60 mph and the impact and braking distance is 9 times greater. At 60 mph, your stopping distance is greater than the length of a football field. Increase the speed to 80 mph and the impact and braking distance are 16 times greater than at 20 mph. High speeds greatly increase the severity of crashes and stopping distances. By slowing down, you can reduce braking distance. The Effect of Vehicle Weight on Stopping Distance. The heavier the vehicle, the more work the brakes must do to stop it, and the more heat they absorb. But the brakes, tires, springs, and shock absorbers on heavy vehicles are designed to work best when the vehicle is fully loaded. Empty trucks require greater stopping distances because an empty vehicle has less traction. # 2.6.2 – Matching Speed to the Road Surface You can't steer or brake a vehicle unless you have traction. Traction is friction between the tires and the road. There are some road conditions that reduce traction and call for lower speeds. **Slippery Surfaces.** It will take longer to stop, and it will be harder to turn without skidding, when the road is slippery. Wet roads can double stopping distance. You must drive slower to be able to stop in the same distance as on a dry road. Reduce speed by about one-third (e.g., slow from 55 to about 35 mph) on a wet road. On packed snow, reduce speed by a half, or more. If the surface is icy, reduce speed to a crawl and stop driving as soon as you can safely do so. **Identifying Slippery Surfaces.** Sometimes it's hard to know if the road is slippery. Here are some signs of slippery roads: **Shaded Areas**. Shady parts of the road will remain icy and slippery long after open areas have melted. **Bridges.** When the temperature drops, bridges will freeze before the road will. Be especially careful when the temperature is close to 32 degrees Fahrenheit. **Melting Ice**. Slight melting will make ice wet. Wet ice is much more slippery than ice that is not wet. **Black Ice**. Black
ice is a thin layer that is clear enough that you can see the road underneath it. It makes the road look wet. Any time the temperature is below freezing and the road looks wet, watch out for black ice. **Vehicle Icing**. An easy way to check for ice is to open the window and feel the front of the mirror, mirror support, or antenna. If there's ice on these, the road surface is probably starting to ice up. **Just After Rain Begins**. Right after it starts to rain, the water mixes with oil left on the road by vehicles. This makes the road very slippery. If the rain continues, it will wash the oil away. Hydroplaning. In some weather, water or slush collects on the road. When this happens, your vehicle can hydroplane. It's like water skiing--the tires lose their contact with the road and have little or no traction. You may not be able to steer or brake. You can regain control by releasing the accelerator and pushing in the clutch. This will slow your vehicle and let the wheels turn freely. If the vehicle is hydroplaning, do not use the brakes to slow down. If the drive wheels start to skid, push in the clutch to let them turn freely. It does not take a lot of water to cause hydroplaning. Hydroplaning can occur at speeds as low as 30 mph if there is a lot of water. Hydroplaning is more likely if tire pressure is low, or the tread is worn. (The grooves in a tire carry away the water; if they aren't deep, they don't work well.) Road surfaces where water can collect can create conditions that cause a vehicle to hydroplane. Watch for clear reflections, tire splashes, and raindrops on the road. These are indications of standing water. ### 2.6.3 - Speed and Curves Drivers must adjust their speed for curves in the road. If you take a curve too fast, two things can happen. The tires can lose their traction and continue straight ahead, so you skid off the road. Or, the tires may keep their traction and the vehicle rolls over. Tests have shown that trucks with a high center of gravity can roll over at the posted speed limit for a curve. Slow to a safe speed before you enter a curve. Braking in a curve is dangerous because it is easier to lock the wheels and cause a skid. Slow down as needed. Don't ever exceed the posted speed limit for the curve. Be in a gear that will let you accelerate slightly in the curve. This will help you keep control. ### 2.6.4 - Speed and Distance Ahead You should always be able to stop within the distance you can see ahead. Fog, rain, or other conditions may require that you slow down to be able to stop in the distance you can see. At night, you can't see as far with low beams as you can with high beams. When you must use low beams, slow down. ### 2.6.5 - Speed and Traffic Flow When you're driving in heavy traffic, the safest speed is the speed of other vehicles. Vehicles going the same direction at the same speed are not likely to run into one another. In many states, speed limits are lower for trucks and buses than for cars. It can vary as much as 15 mph. Use extra caution when you change lanes or pass on these roadways. Drive at the speed of the traffic, if you can without going at an illegal or unsafe speed. Keep a safe following distance. The main reason drivers exceed speed limits is to save time. But, anyone trying to drive faster than the speed of traffic will not be able to save much time. The risks involved are not worth it. If you go faster than the speed of other traffic, you'll have to keep passing other vehicles. This increases the chance of a crash, and it is more tiring. Fatigue increases the chance of a crash. Going with the flow of traffic is safer and easier. ### 2.6.6 - Speed on Downgrades Your vehicle's speed will increase on downgrades because of gravity. Your most important objective is to select and maintain a speed that is not too fast for the: Total weight of the vehicle and cargo. Length of the grade. Steepness of the grade. Road conditions. Weather. If a speed limit is posted, or there is a sign indicating "Maximum Safe Speed," never exceed the speed shown. Also, look for and heed warning signs indicating the length and steepness of the grade. You must use the braking effect of the engine as the principal way of controlling your speed on downgrades. The braking effect of the engine is greatest when it is near the governed rpms and the transmission is in the lower gears. Save your brakes so you will be able to slow or stop as required by road and traffic conditions. Shift your transmission to a low gear before starting down the grade and use the proper braking techniques. Please read carefully the section on going down long, steep downgrades safely in "Mountain Driving." ### 2.6.7 - Roadway Work Zones Speeding traffic is the number one cause of injury and death in roadway work zones. Observe the posted speed limits at all times when approaching and driving through a work zone. Watch your speedometer, and don't allow your speed to creep up as you drive through long sections of road construction. Decrease your speed for adverse weather or road conditions. Decrease your speed even further when a worker is close to the roadway. ### Subsections 2.4, 2.5, and 2.6 Test Your Knowledge - 1. How far ahead does the manual say you should look? - What are two main things to look for ahead? - 3. What's your most important way to see the sides and rear of your vehicle? - 4. What does "communicating" mean in safe driving? - 5. Where should your reflectors be placed when stopped on a divided highway? - 6. What three things add up to total stopping distance? - 7. If you go twice as fast, will your stopping distance increase by two or four times? - 8. Empty trucks have the best braking. True or False? - 9. What is hydroplaning? - 10. What is "black ice"? These questions may be on the test. If you can't answer them all, re-read subsections 2.4, 2.5, and 2.6 ### 2.7 - Managing Space To be a safe driver, you need space all around your vehicle. When things go wrong, space gives you time to think and to take action. To have space available when something goes wrong, you need to manage space. While this is true for all drivers, it is very important for large vehicles. They take up more space and they require more space for stopping and turning. ### 2.7.1 - Space Ahead Of all the space around your vehicle, it is the area ahead of the vehicle--the space you're driving into --that is most important. The Need for Space Ahead. You need space ahead in case you must suddenly stop. According to accident reports, the vehicle that trucks and buses most often run into is the one in front of them. The most frequent cause is following too closely. Remember, if the vehicle ahead of you is smaller than yours, it can probably stop faster than you can. You may crash if you are following too closely. How Much Space? How much space should you keep in front of you? One good rule says you need at least one second for each 10 feet of vehicle length at speeds below 40 mph. At greater speeds, you must add 1 second for safety. For example, if you are driving a 40-foot vehicle, you should leave 4 seconds between you and the vehicle ahead. In a 60-foot rig, you'll need 6 seconds. Over 40 mph, you'd need 5 seconds for a 40-foot vehicle and 7 seconds for a 60-foot vehicle. See Figure 2.12. To know how much space you have, wait until the vehicle ahead passes a shadow on the road, a pavement marking, or some other clear landmark. Then count off the seconds like this: "one thousand- and-one, one thousand-and-two" and so on, until you reach the same spot. Compare your count with the rule of one second for every ten feet of length. If you are driving a 40-foot truck and only counted up to 2 seconds, you're too close. Drop back a little and count again until you have 4 seconds of following distance (or 5 seconds, if you're going over 40 mph). After a little practice, you will know how far back you should be. Remember to add 1 second for speeds above 40 mph. Also remember that when the road is slippery, you need much more space to stop. ## HEAVY VEHICLE FORMULA For timed interval following distance - 1 second required for each 10 feet of vehicle length at speeds under 40 MPH - Above 40 MPH use same formula, then add 1 second for the additional speed 40 foot truck (under 40 MPH) = 4 seconds 50 foot truck (above 40 MPH) = 6 seconds 60 foot truck (under 40 MPH) = 6 seconds Figure 2.12 ### 2.7.2 - Space Behind You can't stop others from following you too closely. But there are things you can do to make it safer. **Stay to the Right.** Heavy vehicles are often tailgated when they can't keep up with the speed of traffic. This often happens when you're going uphill. If a heavy load is slowing you down, stay in the right lane if you can. Going uphill, you should not pass another slow vehicle unless you can get around quickly and safely. **Dealing with Tailgaters Safely.** In a large vehicle, it's often hard to see whether a vehicle is close behind you. You may be tailgated: When you are traveling slowly. Drivers trapped behind slow vehicles often follow closely. In bad weather. Many car drivers follow large vehicles closely during bad weather, especially when it is hard to see the road ahead. If you find yourself being tailgated, here are some things you can do to reduce the chances of a crash. Avoid quick changes. If you have to slow down or turn, signal early, and reduce speed very gradually. Increase your following distance. Opening up room in front of you will help you to avoid having to make sudden speed or direction changes. It also makes it easier for the tailgater to get around you. Don't speed up. It's safer to be tailgated at a low speed than a high speed. Avoid tricks. Don't turn on your taillights or flash your brake lights. Follow the suggestions above. ### 2.7.3 – Space to the Sides Commercial vehicles are often wide and take up most of a lane. Safe drivers will manage what little space they have. You can do this by keeping
your vehicle centered in your lane, and avoid driving alongside others. **Staying Centered in a Lane.** You need to keep your vehicle centered in the lane to keep safe clearance on either side. If your vehicle is wide, you have little room to spare. **Traveling Next to Others.** There are two dangers in traveling alongside other vehicles: Another driver may change lanes suddenly and turn into you. You may be trapped when you need to change lanes. Find an open spot where you aren't near other traffic. When traffic is heavy, it may be hard to find an open spot. If you must travel near other vehicles, try to keep as much space as possible between you and them. Also, drop back or pull forward so that you are sure the other driver can see you. **Strong Winds.** Strong winds make it difficult to stay in your lane. The problem is usually worse for lighter vehicles. This problem can be especially bad coming out of tunnels. Don't drive alongside others if you can avoid it. ### 2.7.4 - Space Overhead Hitting overhead objects is a danger. Make sure you always have overhead clearance. Don't assume that the heights posted at bridges and overpasses are correct. Re-paving or packed snow may have reduced the clearances since the heights were posted. The weight of a cargo van changes its height. An empty van is higher than a loaded one. That you got under a bridge when you were loaded does not mean that you can do it when you are empty. If you doubt you have safe space to pass under an object, go slowly. If you aren't sure you can make it, take another route. Warnings are often posted on low bridges or underpasses, but sometimes they are not. Some roads can cause a vehicle to tilt. There can be a problem clearing objects along the edge of the road, such as signs, trees, or bridge supports. Where this is a problem, drive a little closer to the center of the road. Before you back into an area, get out and check for overhanging objects such as trees, branches, or electric wires. It's easy to miss seeing them while you are backing. (Also check for other hazards at the same time.) ### 2.7.5 - Space Below Many drivers forget about the space under their vehicles. That space can be very small when a vehicle is heavily loaded. This is often a problem on dirt roads and in unpaved yards. Don't take a chance on getting hung up. Drainage channels across roads can cause the ends of some vehicles to drag. Cross such depressions carefully. Railroad tracks can also cause problems, particularly when pulling trailers with a low underneath clearance. Don't take a chance on getting hung up halfway across. ### 2.7.6 - Space for Turns The space around a truck or bus is important in turns. Because of wide turning and offtracking, large vehicles can hit other vehicles or objects during turns. **Right Turns.** Here are some rules to help prevent right-turn crashes: Turn slowly to give yourself and others more time to avoid problems. If you are driving a truck or bus that cannot make the right turn without swinging into another lane, turn wide as you complete the turn. Keep the rear of your vehicle close to the curb. This will stop other drivers from passing you on the right. Don't turn wide to the left as you start the turn. A following driver may think you are turning left and try to pass you on the right. You may crash into the other vehicle as you complete your turn. If you must cross into the oncoming lane to make a turn, watch out for vehicles coming toward you. Give them room to go by or to stop. However, don't back up for them, because you might hit someone behind you. See Figure 2.13. Figure 2.13 **Left Turns.** On a left turn, make sure you have reached the center of the intersection before you start the left turn. If you turn too soon, the left side of your vehicle may hit another vehicle because of offtracking. If there are two turning lanes, always take the right turn lane. Don't start in the inside lane because you may have to swing right to make the turn. Drivers on your left can be more readily seen. See Figure 2.14. Figure 2.14 # 2.7.7 – Space Needed to Cross or Enter Traffic Be aware of the size and weight of your vehicle when you cross or enter traffic. Here are some important things to keep in mind. Because of slow acceleration and the space large vehicles require, you may need a much larger gap to enter traffic than you would in a car. Acceleration varies with the load. Allow more room if your vehicle is heavily loaded. Before you start across a road, make sure you can get all the way across before traffic reaches you. ### 2.8 – Seeing Hazards ### 2.8.1 - Importance of Seeing Hazards What Is a Hazard? A hazard is any road condition or other road user (driver, bicyclist, pedestrian) that is a possible danger. For example, a car in front of you is headed toward the freeway exit, but his brake lights come on and he begins braking hard. This could mean that the driver is uncertain about taking the off ramp. He might suddenly return to the highway. This car is a hazard. If the driver of the car cuts in front of you, it is no longer just a hazard; it is an emergency. Seeing Hazards Lets You Be Prepared. You will have more time to act if you see hazards before they become emergencies. In the example above, you might make a lane change or slow down to prevent a crash if the car suddenly cuts in front of you. Seeing this hazard gives you time to check your mirrors and signal a lane change. Being prepared reduces the danger. A driver who did not see the hazard until the slow car pulled back on the highway in front of him would have to do something very suddenly. Sudden braking or a quick lane change is much more likely to lead to a crash. Learning to See Hazards. There are often clues that will help you see hazards. The more you drive, the better you can learn to see hazards. This section will talk about hazards that you should be aware of. ### 2.8.2 - Hazardous Roads Slow down and be very careful if you see any of the following road hazards. Work Zones. When people are working on the road, it is a hazard. There may be narrower lanes, sharp turns, or uneven surfaces. Other drivers are often distracted and drive unsafely. Workers and construction vehicles may get in the way. Drive slowly and carefully near work zones. Use your four-way flashers or brake lights to warn drivers behind you. **Drop Off.** Sometimes the pavement drops off sharply near the edge of the road. Driving too near the edge can tilt your vehicle toward the side of the road. This can cause the top of your vehicle to hit roadside objects (signs, tree limbs). Also, it can be hard to steer as you cross the drop off, going off the road, or coming back on. Foreign Objects. Things that have fallen on the road can be hazards. They can be a danger to your tires and wheel rims. They can damage electrical and brake lines. They can be caught between dual tires and cause severe damage. Some obstacles that appear to be harmless can be very dangerous. For example, cardboard boxes may be empty, but they may also contain some solid or heavy material capable of causing damage. The same is true of paper and cloth sacks. It is important to remain alert for objects of all sorts, so you can see them early enough to avoid them without making sudden, unsafe moves. Off Ramps/On Ramps. Freeway and turnpike exits can be particularly dangerous for commercial vehicles. Off ramps and on ramps often have speed limit signs posted. Remember, these speeds may be safe for automobiles, but may not be safe for larger vehicles or heavily loaded vehicles. Exits that go downhill and turn at the same time can be especially dangerous. The downgrade makes it difficult to reduce speed. Braking and turning at the same time can be a dangerous practice. Make sure you are going slowly enough before you get on the curved part of an off ramp or on ramp. ### 2.8.3 - Drivers Who Are Hazards In order to protect yourself and others, you must know when other drivers may do something hazardous. Some clues to this type of hazard are discussed below. **Blocked Vision.** People who can't see others are a very dangerous hazard. Be alert for drivers whose vision is blocked. Vans, loaded station wagons, and cars with the rear window blocked are examples. Rental trucks should be watched carefully. Their drivers are often not used to the limited vision they have to the sides and rear of the truck. In winter, vehicles with frosted, ice-covered, or snow-covered windows are hazards. Vehicles may be partly hidden by blind intersections or alleys. If you only can see the rear or front end of a vehicle but not the driver, then he or she can't see you. Be alert because he/she may back out or enter into your lane. Always be prepared to stop. **Delivery Trucks Can Present a Hazard.** Packages or vehicle doors often block the driver's vision. Drivers of step vans, postal vehicles, and local delivery vehicles often are in a hurry and may suddenly step out of their vehicle or drive their vehicle into the traffic lane. Parked Vehicles Can Be Hazards, especially when people start to get out of them. Or, they may suddenly start up and drive into your way. Watch for movement inside the vehicle or movement of the vehicle itself that shows people are inside. Watch for brake lights or backup lights, exhaust, and other clues that a driver is about to move. Be careful of a stopped bus. Passengers may cross in front of or behind the bus, and they often can't see you. **Pedestrians and Bicyclists Can Also Be Hazards.** Walkers, joggers, and bicyclists may be on the road with their back to the traffic, so they can't see you. Sometimes they wear portable stereos with headsets, so they can't hear you either. This can be dangerous. On rainy days, pedestrians may not see you because of hats or umbrellas. They may be hurrying to get out of the rain and may not pay attention to the traffic. **Distractions.** People who are distracted are hazards. Watch for where
they are looking. If they are looking elsewhere, they can't see you. But be alert even when they are looking at you. They may believe that they have the right of way. **Children.** Children tend to act quickly without checking traffic. Children playing with one another may not look for traffic and are a serious hazard. **Talkers.** Drivers or pedestrians talking to one another may not be paying close attention to the traffic. **Workers.** People working on or near the roadway are a hazard clue. The work creates a distraction for other drivers and the workers themselves may not see you. **Ice Cream Trucks.** Someone selling ice cream is a hazard clue. Children may be nearby and may not see you. **Disabled Vehicles.** Drivers changing a tire or fixing an engine often do not pay attention to the danger that roadway traffic is to them. They are often careless. Jacked up wheels or raised hoods are hazard clues. **Accidents.** Accidents are particularly hazardous. People involved in the accident may not look for traffic. Passing drivers tend to look at the accident. People often run across the road without looking. Vehicles may slow or stop suddenly. **Shoppers.** People in and around shopping areas are often not watching traffic because they are looking for stores or looking into store windows. Confused Drivers. Confused drivers often change direction suddenly or stop without warning. Confusion is common near freeway or turnpike interchanges and major intersections. Tourists unfamiliar with the area can be very hazardous. Clues to tourists include car-top luggage and out-of-state license plates. Unexpected actions (stopping in the middle of a block, changing lanes for no apparent reason, backup lights suddenly going on) are clues to confusion. Hesitation is another clue, including driving very slowly, using brakes often, or stopping in the middle of an intersection. You may also see drivers who are looking at street signs, maps, and house numbers. These drivers may not be paying attention to you. **Slow Drivers.** Motorists who fail to maintain normal speed are hazards. Seeing slow moving vehicles early can prevent a crash. Some vehicles, by their nature, are slow and seeing them is a hazard clue (mopeds, farm machinery, construction machinery, tractors, etc.). Some of these will have the "slow moving vehicle" symbol to warn you. This is a red triangle with an orange center. Watch for it. Drivers Signaling a Turn May Be a Hazard. Drivers signaling a turn may slow more than expected or stop. If they are making a tight turn into an alley or driveway, they may go very slowly. If pedestrians or other vehicles block them, they may have to stop on the roadway. Vehicles turning left may have to stop for oncoming vehicles. **Drivers in a Hurry.** Drivers may feel your commercial vehicle is preventing them from getting where they want to go on time. Such drivers may pass you without a safe gap in the oncoming traffic, cutting too close in front of you. Drivers entering the road may pull in front of you in order to avoid being stuck behind you, causing you to brake. Be aware of this and watch for drivers who are in a hurry. **Impaired Drivers.** Drivers who are sleepy, have had too much to drink, are on drugs, or who are ill are hazards. Some clues to these drivers are: Weaving across the road or drifting from one side to another. Leaving the road (dropping right wheels onto the shoulder, or bumping across a curb in a turn). Stopping at the wrong time (stopping at a green light, or waiting for too long at a stop). Open window in cold weather. Speeding up or slowing down suddenly, driving too fast or too slow. Be alert for drunk drivers and sleepy drivers late at night. Driver Body Movement as a Clue. Drivers look in the direction they are going to turn. You may sometimes get a clue from a driver's head and body movements that a driver may be going to make a turn, even though the turn signals aren't on. Drivers making over-the-shoulder checks may be going to change lanes. These clues are most easily seen in motorcyclists and bicyclists. Watch other road users and try to tell whether they might do something hazardous. Conflicts. You are in conflict when you have to change speed and/or direction to avoid hitting someone. Conflicts occur at intersections where vehicles meet, at merges (such as turnpike on ramps) and where there are needed lane changes (such as the end of a lane, forcing a move to another lane of traffic). Other situations include slow moving or stalled traffic in a traffic lane, and accident scenes. Watch for other drivers who are in conflict because they are a hazard to you. When they react to this conflict, they may do something that will put them in conflict with you. ### 2.8.4 - Always Have a Plan You should always be looking for hazards. Continue to learn to see hazards on the road. However, don't forget why you are looking for the hazards--they may turn into emergencies. You look for the hazards in order to have time to plan a way out of any emergency. When you see a hazard, think about the emergencies that could develop and figure out what you would do. Always be prepared to take action based on your plans. In this way, you will be a prepared, defensive driver who will improve your own safety as well as the safety of all road users. # Subsections 2.7 and 2.8 Test Your Knowledge - 1. How do you find out how many seconds of following distance space you have? - 2. If you are driving a 30-foot vehicle at 55 mph, how many seconds of following distance should you allow? - 3. You should decrease your following distance if somebody is following you too closely. True or False? - 4. If you swing wide to the left before turning right, another driver may try to pass you on the right. True or False? - 5. What is a hazard? - 6. Why make emergency plans when you see a hazard? These questions may be on the test. If you can't answer them all, re-read subsections 2.7 and 2.8 ### 2.9 - Distracted Driving Whenever you are driving a vehicle and your attention is not on the road, you're putting yourself, your passengers, other vehicles, and pedestrians in danger. Distracted driving can result when you perform any activity that may shift your full attention from the driving task. Taking your eyes off the road or hands off the steering wheel presents obvious driving risks. Mental activities that take your mind away from driving are just as dangerous. Your eyes can gaze at objects in the driving scene but fail to see them because your attention is distracted elsewhere. Activities that can distract your attention include: talking to passengers; adjusting the radio, CD player or climate controls; eating, drinking or smoking; reading maps or other literature; picking up something that fell; reading billboards and other road advertisements; watching other people and vehicles including aggressive drivers; talking on a cell phone or CB radio; using telematic devices (such as navigation systems, pagers, etc.); daydreaming or being occupied with other mental distractions. ### 2.9.1 – Don't Drive Distracted If drivers react a half-second slower because of distractions, crashes double. Some tips to follow so you won't become distracted: Review and be totally familiar with all safety and usage features on any in-vehicle electronics, including your wireless or cell phone, before you drive. Pre-program radio stations. Pre-load you favorite CDs or cassette tapes. Clear the vehicle of any unnecessary objects. Review maps and plan your route before you begin driving. Adjust all mirrors for best all-round visibility before you start your trip. Don't attempt to read or write while you drive. Avoid smoking, eating and drinking while you drive. Don't engage in complex or emotionally intense conversations with other occupants. # 2.9.2 – Use In-vehicle Communication Equipment Cautiously When possible, pull off the road in a safe, legal place when making/receiving a call on communication equipment. If possible, turn the cell phone off until your destination is reached. Position the cell phone within easy reach. Pre-program cell phones with commonly called numbers. If you have to place a call, find a safe place to pull off the road. Do not place a call while driving. Some jurisdictions require that only hands-free devices can be used while driving. Even these devices are unsafe to use when you are moving down the road. If you must use your cell phone, keep conversations short. Develop ways to get free of long-winded friends and associates while on the road. Never use the cell phone for social visiting. Never read or write texts while in control of the vehicle – this is illegal. Hang up in tricky traffic situations. Do not use the equipment when approaching locations with heavy traffic, road construction, heavy pedestrian traffic, or severe weather conditions. Do not attempt to type or read messages on your satellite system while driving. # 2.9.3 – Watch Out for Other Distracted Drivers You need to be able to recognize other drivers who are engaged in any form of driving distraction. Not recognizing other distracted drivers can prevent you from perceiving or reacting correctly in time to prevent a crash. Watch for: Vehicles that may drift over the lane divider lines or within their own lane. Vehicles traveling at inconsistent speeds. Drivers who are preoccupied with maps, food, cigarettes, cell phones, or other objects. Drivers who appear to be involved in conversations with their passengers. Give a distracted driver plenty of room and maintain your safe following distance. Be very careful when passing a driver who seems to be distracted. The other driver may not be aware of your presence, and they may drift in front of you. ### 2.10 - Aggressive Drivers/Road Rage ### 2.10.1 - What Is It? Aggressive driving and road rage is not a new problem. However, in today's world, where heavy and slow-moving traffic and tight schedules are the norm, more and more
drivers are taking out their anger and frustration in their vehicles. Crowded roads leave little room for error, leading to suspicion and hostility among drivers and encouraging them to take personally the mistakes of other drivers. Aggressive driving is the act of operating a motor vehicle in a selfish, bold, or pushy manner, without regard for the rights or safety of others. Road rage is operating a motor vehicle with the intent of doing harm to others or physically assaulting a driver or their vehicle. ### 2.10.2 - Don't Be an Aggressive Driver How you feel before you even start your vehicle has a lot to do with how stress will affect you while driving. Reduce your stress before and while you drive. Listen to "easy listening" music. Give the drive your full attention. Don't allow yourself to become distracted by talking on your cell phone, eating, etc. Be realistic about your travel time. Expect delays because of traffic, construction, or bad weather and make allowances. If you're going to be later than you expected – deal with it. Take a deep breath and accept the delay. Give other drivers the benefit of the doubt. Try to imagine why he or she is driving that way. Whatever their reason, it has nothing to do with you. Slow down and keep your following distance reasonable. Don't drive slowly in the left lane of traffic. Avoid gestures. Keep you hands on the wheel. Avoid making any gestures that might anger another driver, even seemingly harmless expressions of irritation like shaking your head. Be a cautious and courteous driver. If another driver seems eager to get in front of you, say, "Be my guest." This response will soon become a habit and you won't be as offended by other drivers' actions. # 2.10.3 – What You Should Do When Confronted by an Aggressive Driver First and foremost, make every attempt to get out of their way. Put your pride in the back seat. Do not challenge them by speeding up or attempting to hold-yourown in your travel lane. Avoid eye contact. Ignore gestures and refuse to react to them. Report aggressive drivers to the appropriate authorities by providing a vehicle description, license number, location and, if possible, direction of travel. If you have a cell phone, and can do it safely, call the police. If an aggressive driver is involved in a crash farther down the road, stop a safe distance from the crash scene, wait for the police to arrive, and report the driving behavior that you witnessed. # Subsections 2.9 and 2.10 Test Your Knowledge - What are some tips to follow so you won't become a distracted driver? - 2. How do you use in-vehicle communications equipment cautiously? - 3. How do you recognize a distracted driver? - 4. What is the difference between aggressive driving and road rage? - 5. What should you do when confronted with an aggressive driver? - 6. What are some things you can do to reduce your stress before and while you drive? These questions may be on the test. If you can't answer them all, re-read subsections 2.9 and 2.10. ### 2.11 - Driving at Night ### 2.11.1 - It's More Dangerous You are at greater risk when you drive at night. Drivers can't see hazards as quickly as in daylight, so they have less time to respond. Drivers caught by surprise are less able to avoid a crash. The problems of night driving involve the driver, the roadway, and the vehicle. ### 2.11.2 - Driver Factors **Vision.** People can't see as sharply at night or in dim light. Also, their eyes need time to adjust to seeing in dim light. Most people have noticed this when walking into a dark movie theater. Glare. Drivers can be blinded for a short time by bright light. It takes time to recover from this blindness. Older drivers are especially bothered by glare. Most people have been temporarily blinded by camera flash units or by the high beams of an oncoming vehicle. It can take several seconds to recover from glare. Even two seconds of glare blindness can be dangerous. A vehicle going 55 mph will travel more than half the distance of a football field during that time. Don't look directly at bright lights when driving. Look at the right side of the road. Watch the sidelines when someone coming toward you has very bright lights on. Fatigue and Lack of Alertness. Fatigue (being tired) and lack of alertness are bigger problems at night. The body's need for sleep is beyond a person's control. Most people are less alert at night, especially after midnight. This is particularly true if you have been driving for a long time. Drivers may not see hazards as soon, or react as quickly, so the chance of a crash is greater. If you are sleepy, the only safe cure is to get off the road and get some sleep. If you don't, you risk your life and the lives of others. ### 2.11.3 - Roadway Factors **Poor Lighting.** In the daytime there is usually enough light to see well. This is not true at night. Some areas may have bright street lights, but many areas will have poor lighting. On most roads you will probably have to depend entirely on your headlights. Less light means you will not be able to see hazards as well as in daytime. Road users who do not have lights are hard to see. There are many accidents at night involving pedestrians, joggers, bicyclists, and animals. Even when there are lights, the road scene can be confusing. Traffic signals and hazards can be hard to see against a background of signs, shop windows, and other lights. Drive slower when lighting is poor or confusing. Drive slowly enough to be sure you can stop in the distance you can see ahead. **Drunk Drivers.** Drunk drivers and drivers under the influence of drugs are a hazard to themselves and to you. Be especially alert around the closing times for bars and taverns. Watch for drivers who have trouble staying in their lane or maintaining speed, who stop without reason, or show other signs of being under the influence of alcohol or drugs. ### 2.11.4 - Vehicle Factors Headlights. At night your headlights will usually be the main source of light for you to see by and for others to see you. You can't see nearly as much with your headlights as you see in the daytime. With low beams you can see ahead about 250 feet and with high beams about 350-500 feet. You must adjust your speed to keep your stopping distance within your sight distance. This means going slowly enough to be able to stop within the range of your headlights. Otherwise, by the time you see a hazard, you will not have time to stop. Night driving can be more dangerous if you have problems with your headlights. Dirty headlights may give only half the light they should. This cuts down your ability to see, and makes it harder for others to see you. Make sure your lights are clean and working. Headlights can be out of adjustment. If they don't point in the right direction, they won't give you a good view and they can blind other drivers. Have a qualified person make sure they are adjusted properly. **Other Lights.** In order for you to be seen easily, the following must be clean and working properly: Reflectors. Marker lights. Clearance lights. Taillights. Identification lights. **Turn Signals and Brake Lights.** At night your turn signals and brake lights are even more important for telling other drivers what you intend to do. Make sure you have clean, working turn signals and stop lights. Windshield and Mirrors. It is more important at night than in the daytime to have a clean windshield and clean mirrors. Bright lights at night can cause dirt on your windshield or mirrors to create a glare of its own, blocking your view. Most people have experienced driving toward the sun just as it has risen or is about to set, and found that they can barely see through a windshield that seemed to look OK in the middle of the day. Clean your windshield on the inside and outside for safe driving at night. ### 2.11.5 - Night Driving Procedures **Pre-trip Procedures.** Make sure you are rested and alert. If you are drowsy, sleep before you drive! Even a nap can save your life or the lives of others. If you wear eyeglasses, make sure they are clean and unscratched. Don't wear sunglasses at night. Do a complete pre-trip inspection of your vehicle. Pay attention to checking all lights and reflectors, and cleaning those you can reach. **Avoid Blinding Others.** Glare from your headlights can cause problems for drivers coming toward you. They can also bother drivers going in the same direction you are, when your lights shine in their rearview mirrors. Dim your lights before they cause glare for other drivers. Dim your lights within 500 feet of an oncoming vehicle and when following another vehicle within 500 feet. Avoid Glare from Oncoming Vehicles. Do not look directly at lights of oncoming vehicles. Look slightly to the right at a right lane or edge marking, if available. If other drivers don't put their low beams on, don't try to "get back at them" by putting your own high beams on. This increases glare for oncoming drivers and increases the chance of a crash. Use High Beams When You Can. Some drivers make the mistake of always using low beams. This seriously cuts down on their ability to see ahead. Use high beams when it is safe and legal to do so. Use them when you are not within 500 feet of an approaching vehicle. Also, don't let the inside of your cab get too bright. This makes it harder to see outside. Keep the interior light off, and adjust your instrument lights as low as you can to still be able to read the gauges. If You Get Sleepy, Stop at the Nearest Safe Place. People often don't realize how close they are to falling asleep even when their eyelids are falling shut. If you can safely do so, look at yourself in a mirror. If you look sleepy, or you just feel sleepy, stop driving! You are in a very dangerous condition. The only safe cure is to sleep. ### 2.12 - Driving in Fog Fog can occur at any time. Fog on highways can be extremely dangerous. Fog is often unexpected, and visibility can deteriorate
rapidly. You should watch for foggy conditions and be ready to reduce your speed. Do not assume that the fog will thin out after you enter it. The best advice for driving in fog is don't. It is preferable that you pull off the road into a rest area or truck stop until visibility is better. If you must drive, be sure to consider the following: Obey all fog-related warning signs. Slow down before you enter fog. Use low-beam headlights and fog lights for best visibility even in daytime, and be alert for other drivers who may have forgotten to turn on their lights. Turn on your 4-way flashers. This will give vehicles approaching you from behind a quicker opportunity to notice your vehicle. Watch for vehicles on the side of the roadway. Seeing taillights or headlights in front of you may not be a true indication of where the road is ahead of you. The vehicle may not be on the road at all. Use roadside highway reflectors as guides to determine how the road may curve ahead of you. Listen for traffic you cannot see. Avoid passing other vehicles. Don't stop along the side of the road, unless absolutely necessary. ### 2.13 - Driving in Winter ### 2.13.1 - Vehicle Checks Make sure your vehicle is ready before driving in winter weather. You should make a regular pre-trip inspection, paying extra attention to the following items. **Coolant Level and Antifreeze Amount.** Make sure the cooling system is full and there is enough antifreeze in the system to protect against freezing. This can be checked with a special coolant tester. **Defrosting and Heating Equipment.** Make sure the defrosters work. They are needed for safe driving. Make sure the heater is working, and that you know how to operate it. If you use other heaters and expect to need them (e.g., mirror heaters, battery box heaters, fuel tank heaters), check their operation. Wipers and Washers. Make sure the windshield wiper blades are in good condition. Make sure the wiper blades press against the window hard enough to wipe the windshield clean, otherwise they may not sweep off snow properly. Make sure the windshield washer works and there is washing fluid in the washer reservoir. Use windshield washer antifreeze to prevent freezing of the washer liquid. If you can't see well enough while driving (for example, if your wipers fail), stop safely and fix the problem. **Tires.** Make sure you have enough tread on your tires. The drive tires must provide traction to push the rig over wet pavement and through snow. The steering tires must have traction to steer the vehicle. Enough tread is especially important in winter conditions. You must have at least 4/32 inch tread depth in every major groove on front tires and at least 2/32 inch on other tires. More would be better. Use a gauge to determine if you have enough tread for safe driving. **Tire Chains.** You may find yourself in conditions where you can't drive without chains, even to get to a place of safety. Carry the right number of chains and extra cross-links. Make sure they will fit your drive tires. Check the chains for broken hooks, worn or broken cross-links, and bent or broken side chains. Learn how to put the chains on before you need to do it in snow and ice. **Lights and Reflectors.** Make sure the lights and reflectors are clean. Lights and reflectors are especially important during bad weather. Check from time to time during bad weather to make sure they are clean and working properly. **Windows and Mirrors.** Remove any ice, snow, etc., from the windshield, windows, and mirrors before starting. Use a windshield scraper, snow brush, and windshield defroster as necessary. **Hand Holds, Steps, and Deck Plates.** Remove all ice and snow from hand holds, steps, and deck plates. This will reduce the danger of slipping. Radiator Shutters and Winterfront. Remove ice from the radiator shutters. Make sure the winterfront is not closed too tightly. If the shutters freeze shut or the winterfront is closed too much, the engine may overheat and stop. **Exhaust System.** Exhaust system leaks are especially dangerous when cab ventilation may be poor (windows rolled up, etc.). Loose connections could permit poisonous carbon monoxide to leak into your vehicle. Carbon monoxide gas will cause you to be sleepy. In large enough amounts it can kill you. Check the exhaust system for loose parts and for sounds and signs of leaks. ### 2.13.2 - Driving **Slippery Surfaces.** Drive slowly and smoothly on slippery roads. If it is very slippery, you shouldn't drive at all. Stop at the first safe place. **Start Gently and Slowly.** When first starting, get the feel of the road. Don't hurry. **Check for Ice.** Check for ice on the road, especially bridges and overpasses. A lack of spray from other vehicles indicates ice has formed on the road. Also, check your mirrors and wiper blades for ice. If they have ice, the road most likely will be icy as well. Adjust Turning and Braking to Conditions. Make turns as gently as possible. Don't brake any harder than necessary, and don't use the engine brake or speed retarder. (They can cause the driving wheels to skid on slippery surfaces.) Adjust Speed to Conditions. Don't pass slower vehicles unless necessary. Go slowly and watch far enough ahead to keep a steady speed. Avoid having to slow down and speed up. Take curves at slower speeds and don't brake while in curves. Be aware that as the temperature rises to the point where ice begins to melt, the road becomes even more slippery. Slow down more. Adjust Space to Conditions. Don't drive alongside other vehicles. Keep a longer following distance. When you see a traffic jam ahead, slow down or stop to wait for it to clear. Try hard to anticipate stops early and slow down gradually. Watch for snowplows, as well as salt and sand trucks, and give them plenty of room. Wet Brakes. When driving in heavy rain or deep standing water, your brakes will get wet. Water in the brakes can cause the brakes to be weak, to apply unevenly, or to grab. This can cause lack of braking power, wheel lockups, pulling to one side or the other, and jackknife if you pull a trailer. Avoid driving through deep puddles or flowing water if possible. If not, you should: Slow down and place transmission in a low gear. Gently put on the brakes. This presses linings against brake drums or discs and keeps mud, silt, sand, and water from getting in. Increase engine rpm and cross the water while keeping light pressure on the brakes. When out of the water, maintain light pressure on the brakes for a short distance to heat them up and dry them out. Make a test stop when safe to do so. Check behind to make sure no one is following, then apply the brakes to be sure they work well. If not, dry them out further as described above. (CAUTION: Do not apply too much brake pressure and accelerator at the same time, or you can overheat brake drums and linings.) ### 2.14 – Driving in Very Hot Weather ### 2.14.1 - Vehicle Checks Do a normal pre-trip inspection, but pay special attention to the following items. **Tires.** Check the tire mounting and air pressure. Inspect the tires every two hours or every 100 miles when driving in very hot weather. Air pressure increases with temperature. Do not let air out or the pressure will be too low when the tires cool off. If a tire is too hot to touch, remain stopped until the tire cools off. Otherwise the tire may blow out or catch fire. **Engine Oil.** The engine oil helps keep the engine cool, as well as lubricating it. Make sure there is enough engine oil. If you have an oil temperature gauge, make sure the temperature is within the proper range while you are driving. Engine Coolant. Before starting out, make sure the engine cooling system has enough water and antifreeze according to the engine manufacturer's directions. (Antifreeze helps the engine under hot conditions as well as cold conditions.) When driving, check the water temperature or coolant temperature gauge from time to time. Make sure that it remains in the normal range. If the gauge goes above the highest safe temperature, there may be something wrong that could lead to engine failure and possibly fire. Stop driving as soon as safely possible and try to find out what is wrong. Some vehicles have sight glasses, see-through coolant overflow containers, or coolant recovery containers. These permit you to check the coolant level while the engine is hot. If the container is not part of the pressurized system, the cap can be safely removed and coolant added even when the engine is at operating temperature. Never remove the radiator cap or any part of the pressurized system until the system has cooled. Steam and boiling water can spray under pressure and cause severe burns. If you can touch the radiator cap with your bare hand, it is probably cool enough to open. If coolant has to be added to a system without a recovery tank or overflow tank, follow these steps: Shut engine off. Wait until engine has cooled. Protect hands (use gloves or a thick cloth). Turn radiator cap slowly to the first stop, which releases the pressure seal. Step back while pressure is released from cooling system. When all pressure has been released, press down on the cap and turn it further to remove it. Visually check level of coolant and add more coolant if necessary. Replace cap and turn all the way to the closed position. **Engine Belts.** Learn how to check v-belt tightness on your vehicle by pressing on the belts. Loose belts will not turn the water pump and/or fan properly. This will result in overheating. Also, check belts for cracking or other signs of wear. **Hoses.** Make sure coolant hoses are in good condition. A broken hose while driving can lead to engine failure and even fire. ### 2.14.2 - Driving **Watch for Bleeding Tar.** Tar in the road pavement frequently rises to the surface in very hot weather. Spots where tar "bleeds" to the surface are very slippery. Go Slowly Enough to Prevent Overheating. High
speeds create more heat for tires and the engine. In desert conditions the heat may build up to the point where it is dangerous. The heat will increase chances of tire failure or even fire, and engine failure. ### 2.14.3 - Sharing the Road Bicycling is a healthy form of recreation for many people, while for others it is an important form of transportation. Bicycles have the same rights to use public roads as automobiles and must follow the same traffic laws as other vehicles. Many drivers find it hard to know how to react to bicyclists riding in the street. For the safety of both drivers and bicyclists the following precautions should be taken while driving and bicycling. ### Approaching and passing bicyclists: Increase following distances behind bicyclists because bicycle-stopping distances are shorter than automobiles. Be aware that bicyclists not traveling in the extreme right of the lane may be trying to avoid gravel, debris, bad pavement, sewer grates and other obstacles. Be cautious of bicyclists moving legally into the center of the lane because of road hazards or into the left lane because of a left turn. Avoid passing between a bicyclist and an oncoming vehicle on a two-way roadway. Slow down and allow oncoming vehicles to pass. Then move to the left to allow plenty of room to pass the bicyclist safely. A three foot distance must be present between the passing vehicle and slower traveling bicyclists. Give bicyclists the entire lane when they are passing parked cars. They need the space to avoid opening doors. Use caution when passing bicyclists because the air current created by a passing vehicles may cause bicyclists to have an accident. If you are pulling a trailer, allow for extra passing room when passing bicyclists. Extra caution should be used when motorist are near bicyclists in wet, windy, or icy weather. ### Turning near bicyclists: Drivers who are turning left must wait until oncoming bicyclists pass. Accidents occur when turning drivers do not notice the bicyclists in the flow of traffic or misjudge their speed. Do not swing in front of a bicyclist to make a right turn. Making a right turn after overtaking a bicyclist is also a cause of accidents. Drivers should slow down and stay behind the bicyclist, or LOOK ONCE, THEN AGAIN. MAKE SURE YOU SEE THE BICYCLE AND KNOW ITS SPEED BEFORE YOU TURN. Speeds of bicycles are hard to judge; they can vary from under 10 mph to over 35 mph. Good communication and eye contact between auto drivers and bicyclists are needed to prevent accidents. # Watch for bicyclists and use caution in hazardous conditions: When opening your vehicle door into traffic, look first for bicyclists. Railroad crossings can cause bicyclists to slow down and possible zigzag in order to cross the tracks. Metal or grated surfaces may cause a bicycle to be less stable than any other type of vehicle. Bicyclists should slow down and move to the center of the lane to allow room for handling the uneven surface. Drivers should be prepared for the reaction of a bicyclist who is less experienced and may swerve to correct for the new surface. Long open highways and bridges, trucks creating windblasts can move a bicyclist out of his or her path of travel. Children on bicycles may not be aware of their surroundings. Drivers should be aware that the children may make sudden movements or change direction. Especially in Louisiana, inclement weather conditions create high winds and slippery surfaces that can cause extreme problems for bicyclists. Because these conditions create stability problems for all vehicles, drivers should allow more following distance for bicyclists. ### SHARING THE ROAD WITH MOTORCYCLES Today's motorcycle riders are friends, relatives, and neighbors, but many drivers still have not adjusted to motorcycles appearing in traffic. Traveling by motorcycle is appealing to some people; they are fuel and space efficient and can be just plain fun to ride. But there is a flip side. Motorcyclists are more vulnerable to injury if involved in an accident. Research shows that over two-thirds of the car/motorcycle accidents are the results of a vehicle driver turning in front of a motorcyclist. Motorcyclists and other vehicles need to mix in traffic without causing harm to each other. Motorcycles present a narrow silhouette and are usually much shorter in length than any other type vehicle. The small profile of the motorcycle may make it appear farther away and traveling slower than it actually is. Because it is difficult to judge the motorcycle's distance and speed, drivers need to take a second look, and then a third. Its small size also makes it more difficult to spot in traffic. Some motorcyclists take advantage of their small size and maneuverability. They may cut between vehicles and put themselves in places where drivers cannot see them. Be alert for a motorcycle to appear unexpectedly. Because of a motorcycle's size, its position within a lane of traffic will change as traffic conditions change. The motorcyclist should position himself in the lane to see and be seen. Often this means riding in the left portion of the traffic lane to allow a better view of traffic and road situations. It also makes the motorcycle more visible to other traffic. However, as traffic and road conditions change, the rider may move. This move could be to the center of the lane or even to the right side to avoid traffic or to be seen by others on the road. Most drivers take for granted the ability of their vehicle to handle minor road hazards such as potholes, strong winds or railroad tracks. Minor problems for the four-wheeled vehicle can be major problems for motorcycles. The cyclist will change position within the lane to increase the distance from potential hazards. These lateral movements sometimes occur suddenly. Motorists need to be alert for these sudden changes in position and direction, and drive accordingly. Respect the vehicle space of a motorcycle and its position in traffic. Motorcycles are allowed the full width of a lane in which to maneuver. Because a motorcycle has the right to a full traffic lane, pass it just as you would any other vehicle. Don't pass too fast or too close. The wind blast of large, fast moving vehicles can blow a motorcycle out of control. Intersections are the most likely places for car/motorcycle collisions to occur. This usually is the result of a driver NOT SEEING the motorcycle and turning into the motorcycle's path. Misinterpreting a cyclist's intentions can also lead to problems. A cyclist will change lane position to prepare for upcoming traffic conditions. The cyclist will move to one side of the lane in preparation for a turn or possibly to move away from a hazard unseen by other motorists. Do not assume the cyclist's intention until the maneuver is unmistakably started, such as a turn into an intersection or driveway. Also, turn signals do not automatically shut off on a motorcycle and cyclists occasionally forget to cancel them after a turn is completed. Make sure you know what the cyclist is going to do BEFORE you move into the motorcycle's path. When driving behind a motorcycle, allow (4) four or more seconds following distance. This provides the cyclist enough room to maneuver or stop in an emergency. Due to its vulnerable nature and the difficulty motorists have in judging a motorcycle's speed and distance, space between the two vehicles should be increased to avoid sudden braking. Both cyclists and drivers are more likely to make incorrect decisions if there is not enough stopping distance or ability to see and react to conditions. This leads to accidents. A cyclist's chances of injury are greater if forced to avoid obstacles ahead, as well as a driver following too closely. The single headlight and single tail light of a motorcycle can blend into the lights of other vehicles. This can cause you to misjudge distance. Always dim your headlights for a motorcycle just as required for other vehicles. ### SHARING THE ROAD WITH BIG TRUCKS It takes special driving skills and knowledge to drive safely with and around big trucks. You cannot drive around the big truck the way you drive around other vehicles. The most important tip is to give a wide clearance (berth) to the big truck. It is known that collisions between large trucks and lighter vehicles frequently result in death in the driver or occupants of the "other vehicles." Big trucks are different because they have a much longer stopping distance than other vehicles, and longer still on wet roads. The ability of the truck driver to control the truck during emergency braking is very limited. Drivers of smaller vehicles (as well as larger vehicles) need to practice the following safety tips: As a general rule, keep as much space as possible between your vehicle and large trucks. Do not cut in front of a truck just because you see open space there. That space is the truck's cushion of safety because of its longer stopping distance. If you have to stop suddenly, it will be very difficult for the truck to avoid hitting you. Also, if the truck has a long hood, the driver may not be able to see you at all. Do not linger alongside a truck; you may be in the trucker's blind spot. The size and configuration of many trucks, especially those with trailers, create large blind spots for the truck driver. If you cannot see a truck driver's face in one of his mirrors, the truck driver cannot see you and probably does not know that you are there. If you are following a truck and cannot see the truck's side mirrors, you are driving too close. The driver cannot see you, so back off. Always give trucks plenty of room when they are turning. The relationship between the cab, mirrors, and trailer change constantly during a turn, creating varying blind spots. Also, trucks need extra space to turn because of their size. Remember, trucks don't drive like cars. Generally speaking, the bigger the truck is: - The bigger its blind
spots. - The more room it needs to maneuver. - The longer it takes to stop. - The longer it takes to pass it. - The more likely you're going to be the loser in a collision. #### **Following** In good road and weather conditions you should leave a gap of <u>at least</u> (4) four or more seconds between your vehicle and the truck in front of you, and an even longer gap when conditions are poor. This will prevent road spray picked up by the truck's wheels affecting your visibility. The truck may also block your view of the road ahead, so hanging back will increase your field of vision and give you more stopping distance if the truck brakes suddenly to avoid a hazard you can't see. Because of the size of trucks, another driver's view of you may be restricted. At intersections and in slow traffic, ensure you stay far enough away for other drivers to see you. When following at night, keep your headlights on low beam. The truck's many side mirrors will reflect high beam lights right into the driver's eyes. #### **Passing** If you are passing a truck, always pass on the left side, and make sure to allow plenty of room before switching back in front of the truck. Never, ever cut in front of a large truck. #### **Merging Courtesy** When traveling in the right lane, courtesy dictates that you move over to allow a truck to merge. Be careful when pulling behind a truck which has just entered the highway; it takes a lot longer for a large truck to get up to speed. Respect the "No Zone". SEE AND BE SEEN. #### Subsections 2.11, 2.12, 2.13, and 2.14 Test Your Knowledge - You should use low beams whenever you can. True or False? - 2. What should you do before you drive if you are drowsy? - 3. What effects can wet brakes cause? How can you avoid these problems? - 4. You should let air out of hot tires so the pressure goes back to normal. True or False? - 5. You can safely remove the radiator cap as long as the engine isn't overheated. True or False? These questions may be on the test. If you can't answer all of them, re-read subsections 2.11, 2.12, 2.13, and 2.14. #### 2.15 - Railroad-highway Crossings Railroad-highway grade crossings are a special kind of intersection where the roadway crosses train tracks. These crossings are always dangerous. Every such crossing must be approached with the expectation that a train is coming. #### 2.15.1 - Types of Crossings Passive Crossings. This type of crossing does not have any type of traffic control device. The decision to stop or proceed rests entirely in your hands. Passive crossings require you to recognize the crossing, search for any train using the tracks and decide if there is sufficient clear space to cross safely. Passive crossings have yellow circular advance warning signs, pavement markings and crossbucks to assist you in recognizing a crossing. **Active Crossings.** This type of crossing has a traffic control device installed at the crossing to regulate traffic at the crossing. These active devices include flashing red lights, with or without bells and flashing red lights with bells and gates. #### 2.15.2 - Warning Signs and Devices Advance Warning Signs. The round, black-onyellow warning sign is placed ahead of a public railroad-highway crossing. The advance warning sign tells you to slow down, look and listen for the train, and be prepared to stop at the tracks if a train is coming. See Figure 2.15. Figure 2.15 **Pavement Markings.** Pavement markings mean the same as the advance warning sign. They consist of an "X" with the letters ""RR" and a nopassing marking on two-lane roads. See Figure 2.16. Figure 2.16 There is also a no passing zone sign on two-lane roads. There may be a white stop line painted on the pavement before the railroad tracks. The front of the school bus must remain behind this line while stopped at the crossing. **Crossbuck Signs.** This sign marks the grade crossing. It requires you to yield the right-of-way to the train. If there is no white line painted on the pavement, you must stop the bus before the crossbuck sign. When the road crosses over more than one set of tracks, a sign below the crossbuck indicates the number of tracks. See Figure 2.17. Figure 2.17 Flashing Red Light Signals. At many highway-rail grade crossings, the crossbuck sign has flashing red lights and bells. When the lights begin to flash, stop! A train is approaching. You are required to yield the right-of-way to the train. If there is more than one track, make sure all tracks are clear before crossing. See Figure 2.18. **Gates.** Many railroad-highway crossings have gates with flashing red lights and bells. Stop when the lights begin to flash and before the gate lowers across the road lane. Remain stopped until the gates go up and the lights have stopped flashing. Proceed when it is safe. See Figure 2.18. Figure 2.18 #### 2.15.3 - Driving Procedures **Never Race a Train to a Crossing.** Never attempt to race a train to a crossing. It is extremely difficult to judge the speed of an approaching train. **Reduce Speed.** Speed must be reduced in accordance with your ability to see approaching trains in any direction, and speed must be held to a point which will permit you to stop short of the tracks in case a stop is necessary. **Don't Expect to Hear a Train.** Because of noise inside your vehicle, you cannot expect to hear the train horn until the train is dangerously close to the crossing. **Don't Rely on Signals.** You should not rely solely upon the presence of warning signals, gates, or flagmen to warn of the approach of trains. Be especially alert at crossings that do not have gates or flashing red light signals. **Double Tracks Require a Double Check.** Remember that a train on one track may hide a train on the other track. Look both ways before crossing. After one train has cleared a crossing, be sure no other trains are near before starting across the tracks. Yard Areas and Grade Crossings in Cities and Towns. Yard areas and grade crossings in cities and towns are just as dangerous as rural grade crossings. Approach them with as much caution. #### 2.15.4 – Stopping Safely at Railroadhighway Crossings A full stop is required at grade crossings whenever: The nature of the cargo makes a stop mandatory under state or federal regulations. Such a stop is otherwise required by law. When stopping be sure to: Check for traffic behind you while stopping gradually. Use a pullout lane, if available. Turn on your four-way emergency flashers. #### 2.15.5 - Crossing the Tracks Railroad crossings with steep approaches can cause your unit to hang up on the tracks. Never permit traffic conditions to trap you in a position where you have to stop on the tracks. Be sure you can get all the way across the tracks before you start across. It takes a typical tractor-trailer unit at least 14 seconds to clear a single track and more than 15 seconds to clear a double track. Do not shift gears while crossing railroad tracks. #### 2.15.6 - Special Situations Be Aware! These trailers can get stuck on raised crossings: Low slung units (lowboy, car carrier, moving van, possum-belly livestock trailer). Single-axle tractor pulling a long trailer with its landing gear set to accommodate a tandem-axle tractor. If for any reason you get stuck on the tracks, get out of the vehicle and away from the tracks. Check signposts or signal housing at the crossing for emergency notification information. Call 911 or other emergency number. Give the location of the crossing using all identifiable landmarks, especially the DOT number, if posted. #### 2.16 – Mountain Driving In mountain driving, gravity plays a major role. On any upgrade, gravity slows you down. The steeper the grade, the longer the grade, and/or the heavier the load--the more you will have to use lower gears to climb hills or mountains. In coming down long, steep downgrades, gravity causes the speed of your vehicle to increase. You must select an appropriate safe speed, then use a low gear, and proper braking techniques. You should plan ahead and obtain information about any long, steep grades along your planned route of travel. If possible, talk to other drivers who are familiar with the grades to find out what speeds are safe. You must go slowly enough so your brakes can hold you back without getting too hot. If the brakes become too hot, they may start to "fade." This means you have to apply them harder and harder to get the same stopping power. If you continue to use the brakes hard, they can keep fading until you cannot slow down or stop at all. #### 2.16.1 - Select a "Safe" Speed Your most important consideration is to select a speed that is not too fast for the: Total weight of the vehicle and cargo. Length of the grade. Steepness of the grade. Road conditions. Weather. If a speed limit is posted, or there is a sign indicating "Maximum Safe Speed," never exceed the speed shown. Also, look for and heed warning signs indicating the length and steepness of the grade. You must use the braking effect of the engine as the principal way of controlling your speed. The braking effect of the engine is greatest when it is near the governed rpms and the transmission is in the lower gears. Save your brakes so you will be able to slow or stop as required by road and traffic conditions. ### 2.16.2 – Select the Right Gear Before Starting Down the Grade Shift the transmission to a low gear before starting down the grade. Do not try to downshift after your speed has already built up. You will not be able to shift into a lower gear. You may not even be able to get back into any gear and all engine braking effect will be lost. Forcing an automatic transmission into a lower gear at high speed could damage the transmission and also lead to loss of all engine braking effect. With older trucks, a rule for choosing gears is to use the same gear going down a hill that you would need to climb the hill. However, new trucks have low friction parts and streamlined shapes for
fuel economy. They may also have more powerful engines. This means they can go up hills in higher gears and have less friction and air drag to hold them back going down hills. For that reason, drivers of modern trucks may have to use lower gears going down a hill than would be required to go up the hill. You should know what is right for your vehicle. #### 2.16.3 - Brake Fading or Failure Brakes are designed so brake shoes or pads rub against the brake drum or disks to slow the vehicle. Braking creates heat, but brakes are designed to take a lot of heat. However, brakes can fade or fail from excessive heat caused by using them too much and not relying on the engine braking effect. Brake fade is also affected by adjustment. To safely control a vehicle, every brake must do its share of the work. Brakes out of adjustment will stop doing their share before those that are in adjustment. The other brakes can then overheat and fade, and there will not be enough braking available to control the vehicle. Brakes can get out of adjustment quickly, especially when they are used a lot; also, brake linings wear faster when they are hot. Therefore, brake adjustment must be checked frequently. #### 2.16.4 – Proper Braking Technique **Remember.** The use of brakes on a long and/or steep downgrade is only a supplement to the braking effect of the engine. Once the vehicle is in the proper low gear, the following are the proper braking techniques: Apply the brakes just hard enough to feel a definite slowdown. When your speed has been reduced to approximately five mph below your "safe" speed, release the brakes. (This brake application should last for about three seconds.) When your speed has increased to your "safe" speed, repeat steps 1 and 2. For example, if your "safe" speed is 40 mph, you would not apply the brakes until your speed reaches 40 mph. You now apply the brakes hard enough to gradually reduce your speed to 35 mph and then release the brakes. Repeat this as often as necessary until you have reached the end of the downgrade. Escape ramps have been built on many steep mountain downgrades. Escape ramps are made to stop runaway vehicles safely without injuring drivers and passengers. Escape ramps use a long bed of loose, soft material to slow a runaway vehicle, sometimes in combination with an upgrade. Know escape ramp locations on your route. Signs show drivers where ramp are located. Escape ramps save lives, equipment and cargo. #### Subsections 2.15 and 2.16 Test Your Knowledge - What factors determine your selection of a "safe" speed when going down a long, steep downgrade? - Why should you be in the proper gear before starting down a hill? - 3. Describe the proper braking technique when going down a long, steep downgrade. - 4. What type of vehicles can get stuck on a railroad-highway crossing? - 5. How long does it take for a typical tractor-trailer unit to clear a double track? These questions may be on the test. If you can't answer them all, re-read subsections 2.15 and 2.16. #### 2.17 – Driving Emergencies Traffic emergencies occur when two vehicles are about to collide. Vehicle emergencies occur when tires, brakes, or other critical parts fail. Following the safety practices in this manual can help prevent emergencies. But if an emergency does happen, your chances of avoiding a crash depend upon how well you take action. Actions you can take are discussed below. #### 2.17.1 - Steering to Avoid a Crash Stopping is not always the safest thing to do in an emergency. When you don't have enough room to stop, you may have to steer away from what's ahead. Remember, you can almost always turn to miss an obstacle more quickly than you can stop. (However, top-heavy vehicles and tractors with multiple trailers may flip over.) Keep Both Hands on the Steering Wheel. In order to turn quickly, you must have a firm grip on the steering wheel with both hands. The best way to have both hands on the wheel, if there is an emergency, is to keep them there all the time. **How to Turn Quickly and Safely.** A quick turn can be made safely, if it's done the right way. Here are some points that safe drivers use: Do not apply the brake while you are turning. It's very easy to lock your wheels while turning. If that happens, you may skid out of control. Do not turn any more than needed to clear whatever is in your way. The more sharply you turn, the greater the chances of a skid or rollover. Be prepared to "countersteer," that is, to turn the wheel back in the other direction, once you've passed whatever was in your path. Unless you are prepared to countersteer, you won't be able to do it quickly enough. You should think of emergency steering and countersteering as two parts of one driving action. Where to Steer. If an oncoming driver has drifted into your lane, a move to your right is best. If that driver realizes what has happened, the natural response will be to return to his or her own lane. If something is blocking your path, the best direction to steer will depend on the situation. If you have been using your mirrors, you'll know which lane is empty and can be safely used. If the shoulder is clear, going right may be best. No one is likely to be driving on the shoulder but someone may be passing you on the left. You will know if you have been using your mirrors. If you are blocked on both sides, a move to the right may be best. At least you won't force anyone into an opposing traffic lane and a possible head-on collision. **Leaving the Road.** In some emergencies, you may have to drive off the road. It may be less risky than facing a collision with another vehicle. Most shoulders are strong enough to support the weight of a large vehicle and, therefore, offer an available escape route. Here are some guidelines, if you do leave the road. **Avoid Braking.** If possible, avoid using the brakes until your speed has dropped to about 20 mph. Then brake very gently to avoid skidding on a loose surface. Keep One Set of Wheels on the Pavement, if Possible. This helps to maintain control. **Stay on the Shoulder.** If the shoulder is clear, stay on it until your vehicle has come to a stop. Signal and check your mirrors before pulling back onto the road. **Returning to the Road.** If you are forced to return to the road before you can stop, use the following procedure: Hold the wheel tightly and turn sharply enough to get right back on the road safely. Don't try to edge gradually back on the road. If you do, your tires might grab unexpectedly and you could lose control. When both front tires are on the paved surface, countersteer immediately. The two turns should be made as a single "steer-countersteer" move. #### 2.17.2 - How to Stop Quickly and Safely If somebody suddenly pulls out in front of you, your natural response is to hit the brakes. This is a good response if there's enough distance to stop, and you use the brakes correctly. You should brake in a way that will keep your vehicle in a straight line and allow you to turn if it becomes necessary. You can use the "controlled braking" method or the "stab braking" method. Controlled Braking. With this method, you apply the brakes as hard as you can without locking the wheels. Keep steering wheel movements very small while doing this. If you need to make a larger steering adjustment or if the wheels lock, release the brakes. Re-apply the brakes as soon as you can. #### **Stab Braking** Apply your brakes all the way. Release brakes when wheels lock up. As soon as the wheels start rolling, apply the brakes fully again. (It can take up to one second for the wheels to start rolling after you release the brakes. If you re-apply the brakes before the wheels start rolling, the vehicle won't straighten out.) **Don't Jam on the Brakes.** Emergency braking does not mean pushing down on the brake pedal as hard as you can. That will only keep the wheels locked up and cause a skid. If the wheels are skidding, you cannot control the vehicle. #### 2.17.3 - Brake Failure Brakes kept in good condition rarely fail. Most hydraulic brake failures occur for one of two reasons: (Air brakes are discussed in Section 5.) Loss of hydraulic pressure. Brake fade on long hills. Loss of Hydraulic Pressure. When the system won't build up pressure, the brake pedal will feel spongy or go to the floor. Here are some things you can do. **Downshift.** Putting the vehicle into a lower gear will help to slow the vehicle. **Pump the Brakes.** Sometimes pumping the brake pedal will generate enough hydraulic pressure to stop the vehicle. Use the Parking Brake. The parking or emergency brake is separate from the hydraulic brake system. Therefore, it can be used to slow the vehicle. However, be sure to press the release button or pull the release lever at the same time you use the emergency brake so you can adjust the brake pressure and keep the wheels from locking up. Find an Escape Route. While slowing the vehicle, look for an escape route--an open field, side street, or escape ramp. Turning uphill is a good way to slow and stop the vehicle. Make sure the vehicle does not start rolling backward after you stop. Put it in low gear, apply the parking brake, and, if necessary, roll back into some obstacle that will stop the vehicle. Brake Failure on Downgrades. Going slow enough and braking properly will almost always prevent brake failure on long downgrades. Once the brakes have failed, however, you are going to have to look outside your vehicle for something to stop it. Your best hope is an escape ramp. If there is one, there'll be signs telling you about it. Use it. Ramps are usually located a few miles from the top of the downgrade. Every year, hundreds of drivers avoid injury to themselves or damage to their vehicles by using escape ramps. Some escape ramps use soft gravel that resists the motion of the vehicle and brings it to a stop. Others turn uphill, using the hill to stop the vehicle and soft gravel to hold it in place.
Any driver who loses brakes going downhill should use an escape ramp if it's available. If you don't use it, your chances of having a serious crash may be much greater. If no escape ramp is available, take the least hazardous escape route you can--such as an open field or a side road that flattens out or turns uphill. Make the move as soon as you know your brakes don't work. The longer you wait, the faster the vehicle will go, and the harder it will be to stop. #### 2.17.4 - Tire Failure Recognize Tire Failure. Quickly knowing you have a tire failure will let you have more time to react. Having just a few extra seconds to remember what it is you're supposed to do can help you. The major signs of tire failure are: Sound. The loud "bang" of a blowout is an easily recognized sign. Because it can take a few seconds for your vehicle to react, you might think it was some other vehicle. But any time you hear a tire blow, you'd be safest to assume it is yours. Vibration. If the vehicle thumps or vibrates heavily, it may be a sign that one of the tires has gone flat. With a rear tire, that may be the only sign you get. Feel. If the steering feels "heavy," it is probably a sign that one of the front tires has failed. Sometimes, failure of a rear tire will cause the vehicle to slide back and forth or "fishtail." However, dual rear tires usually prevent this. **Respond to Tire Failure.** When a tire fails, your vehicle is in danger. You must immediately: Hold the Steering Wheel Firmly. If a front tire fails, it can twist the steering wheel out of your hand. The only way to prevent this is to keep a firm grip on the steering wheel with both hands at all times. Stay Off the Brake. It's natural to want to brake in an emergency. However, braking when a tire has failed could cause loss of control. Unless you're about to run into something, stay off the brake until the vehicle has slowed down. Then brake very gently, pull off the road, and stop. Check the Tires. After you've come to a stop, get out and check all the tires. Do this even if the vehicle seems to be handling all right. If one of your dual tires goes, the only way you may know it is by getting out and looking at it. #### 2.18 – Antilock Braking Systems (ABS) ABS is a computerized system that keeps your wheels from locking up during hard brake applications. ABS is an addition to your normal brakes. It does not decrease or increase your normal braking capability. ABS only activates when wheels are about to lock up. ABS does not necessarily shorten your stopping distance, but it does help you keep the vehicle under control during hard braking. ### 2.18.1 – How Antilock Braking Systems Work Sensors detect potential wheel lock up. An electronic control unit (ECU) will then decrease brake pressure to avoid wheel lockup. Brake pressure is adjusted to provide the maximum braking without danger of lockup. ABS works far faster than the driver can respond to potential wheel lockup. At all other times the brake system will operate normally. ### 2.18.2 – Vehicles Required to Have Antilock Braking Systems The Department of Transportation requires that ABS be on: Truck tractors with air brakes built on or after March 1, 1997. Other air brake vehicles, (trucks, buses, trailers, and converter dollies) built on or after March 1, 1998. Hydraulically braked trucks and buses with a gross vehicle weight rating of 10,000 lbs or more built on or after March 1, 1999. Many commercial vehicles built before these dates have been voluntarily equipped with ABS. ### 2.18.3 – How to Know If Your Vehicle Is Equipped with ABS Tractors, trucks, and buses will have yellow ABS malfunction lamps on the instrument panel. Trailers will have yellow ABS malfunction lamps on the left side, either on the front or rear corner. Dollies manufactured on or after March 1, 1998, are required to have a lamp on the left side. As a system check on newer vehicles, the malfunction lamp comes on at start-up for a bulb check, and then goes out quickly. On older systems, the lamp could stay on until you are driving over five mph. If the lamp stays on after the bulb check, or goes on once you are under way, you may have lost ABS control. In the case of towed units manufactured before it was required by the Department of Transportation, it may be difficult to tell if the unit is equipped with ABS. Look under the vehicle for the ECU and wheel speed sensor wires coming from the back of the brakes. #### 2.18.4 - How ABS Helps You When you brake hard on slippery surfaces in a vehicle without ABS, your wheels may lock up. When your steering wheels lock up, you lose steering control. When your other wheels lock up, you may skid, jackknife, or even spin the vehicle. ABS helps you avoid wheel lock up and maintain control. You may or may not be able to stop faster with ABS, but you should be able to steer around an obstacle while braking, and avoid skids caused by over braking. ### 2.18.5 – ABS on the Tractor Only or Only on the Trailer Having ABS on only the tractor, only the trailer, or even on only one axle, still gives you more control over the vehicle during braking. Brake normally. When only the tractor has ABS, you should be able to maintain steering control, and there is less chance of jackknifing. But keep your eye on the trailer and let up on the brakes (if you can safely do so) if it begins to swing out. When only the trailer has ABS, the trailer is less likely to swing out, but if you lose steering control or start a tractor jackknife, let up on the brakes (if you can safely do so) until you regain control. #### 2.18.6 - Braking with ABS When you drive a vehicle with ABS, you should brake as you always have. In other words: Use only the braking force necessary to stop safely and stay in control. Brake the same way, regardless of whether you have ABS on the bus, tractor, the trailer, or both. As you slow down, monitor your tractor and trailer and back off the brakes (if it is safe to do so) to stay in control. There is only one exception to this procedure. If you drive a straight truck or combination with working ABS on all axles, in an emergency stop, you can fully apply the brakes. #### 2.18.7 - Braking If ABS Is Not Working Without ABS you still have normal brake functions. Drive and brake as you always have. Vehicles with ABS have yellow malfunction lamps to tell you if something isn't working. As a system check on newer vehicles, the malfunction lamp comes on at start-up for a bulb check and then goes out quickly. On older systems, the lamp could stay on until you are driving over five mph. If the lamp stays on after the bulb check, or goes on once you are under way, you may have lost ABS control on one or more wheels. Remember, if your ABS malfunctions, you still have regular brakes. Drive normally, but get the system serviced soon. #### 2.18.8 - Safety Reminders ABS won't allow you to drive faster, follow more closely, or drive less carefully. ABS won't prevent power or turning skids—ABS should prevent brake-induced skids or jackknifes, but not those caused by spinning the drive wheels or going too fast in a turn. ABS won't necessarily shorten stopping distance. ABS will help maintain vehicle control, but not always shorten stopping distance. ABS won't increase or decrease ultimate stopping power–ABS is an "add-on" to your normal brakes, not a replacement for them. ABS won't change the way you normally brake. Under normal brake conditions, your vehicle will stop as it always stopped. ABS only comes into play when a wheel would normally have locked up because of over braking. ABS won't compensate for bad brakes or poor brake maintenance. Remember: The best vehicle safety feature is still a safe driver. Remember: Drive so you never need to use your ABS. Remember: If you need it, ABS could help to prevent a serious crash. #### 2.19 - Skid Control and Recovery A skid happens whenever the tires lose their grip on the road. This is caused in one of four ways: **Over-braking.** Braking too hard and locking up the wheels. Skids also can occur when using the speed retarder when the road is slippery. **Over-steering.** Turning the wheels more sharply than the vehicle can turn. **Over-acceleration.** Supplying too much power to the drive wheels, causing them to spin. **Driving Too Fast.** Most serious skids result from driving too fast for road conditions. Drivers who adjust their driving to conditions don't overaccelerate and don't have to over-brake or oversteer from too much speed. #### 2.19.1 – Drive-wheel Skids By far the most common skid is one in which the rear wheels lose traction through excessive braking or acceleration. Skids caused by acceleration usually happen on ice or snow. Taking your foot off the accelerator can easily stop them. (If it is very slippery, push the clutch in. Otherwise, the engine can keep the wheels from rolling freely and regaining traction.) Rear wheel braking skids occur when the rear drive wheels lock. Because locked wheels have less traction than rolling wheels, the rear wheels usually slide sideways in an attempt to "catch up" with the front wheels. In a bus or straight truck, the vehicle will slide sideways in a "spin out." With vehicles towing trailers, a drive-wheel skid can let the trailer push the towing vehicle sideways, causing a sudden jackknife. See Figure 2.19. Figure 2.19 ### 2.19.2 – Correcting a Drive-wheel Braking Skid Do the following to correct a drive-wheel braking skid. **Stop Braking.** This will let the rear wheels roll again, and keep the rear wheels from sliding. **Countersteer.** As a vehicle turns back on course, it has a tendency to keep on turning. Unless you turn the steering wheel quickly the other way, you may find yourself skidding in the opposite direction. Learning to stay off the brake, turn the steering wheel quickly, push in the clutch, and countersteer in a skid takes a lot of practice. The best place to get this practice is on a large driving range
or "skid pad." #### 2.19.3 - Front-wheel Skids Driving too fast for conditions causes most frontwheel skids. Other causes include lack of tread on the front tires and cargo loaded so not enough weight is on the front axle. In a front-wheel skid, the front end tends to go in a straight line regardless of how much you turn the steering wheel. On a very slippery surface, you may not be able to steer around a curve or turn. When a front-wheel skid occurs, the only way to stop the skid is to let the vehicle slow down. Stop turning and/or braking so hard. Slow down as quickly as possible without skidding. ### Subsections 2.17, 2.18, and 2.19 Test Your Knowledge - 1. Stopping is not always the safest thing to do in an emergency. True or False? - 2. What are some advantages of going right instead of left around an obstacle? - 3. What is an "escape ramp?" - 4. If a tire blows out, you should put the brakes on hard to stop quickly. True or False? - 5. How do you know if your vehicle has antilock brakes? - 6. What is the proper braking technique when driving a vehicle with antilock brakes? - 7. How do antilock brakes help you? These questions may be on the test. If you can't answer them all, re-read subsections 2.17, 2.18, and 2.19. #### 2.20 - Accident Procedures When you're in an accident and not seriously hurt, you need to act to prevent further damage or injury. The basic steps to be taken at any accident are to: Protect the area. Notify authorities. Care for the injured. #### 2.20.1 - Protect the Area The first thing to do at an accident scene is to keep another accident from happening in the same spot. To protect the accident area: If your vehicle is involved in the accident, try to get it to the side of the road. This will help prevent another accident and allow traffic to move. If you're stopping to help, park away from the accident. The area immediately around the accident will be needed for emergency vehicles. Put on your flashers. Set out reflective triangles to warn other traffic. Make sure other drivers can see them in time to avoid the accident. #### 2.20.2 - Notify Authorities If you have a cell phone or CB, call for assistance before you get out of your vehicle. If not, wait until after the accident scene has been properly protected, then phone or send someone to phone the police. Try to determine where you are so you can give the exact location. #### 2.20.3 - Care for the Injured If a qualified person is at the accident and helping the injured, stay out of the way unless asked to assist. Otherwise, do the best you can to help any injured parties. Here are some simple steps to follow in giving assistance: Don't move a severely injured person unless the danger of fire or passing traffic makes it necessary. Stop heavy bleeding by applying direct pressure to the wound. Keep the injured person warm. #### 2.21 - Fires Truck fires can cause damage and injury. Learn the causes of fires and how to prevent them. Know what to do to extinguish fires. #### 2.21.1 - Causes of Fire The following are some causes of vehicle fires: After Accidents. Spilled fuel, improper use of flares. Tires. Under-inflated tires and duals that touch. Electrical System. Short circuits due to damaged insulation, loose connections. Fuel. Driver smoking, improper fueling, loose fuel connections. Cargo. Flammable cargo, improperly sealed or loaded cargo, poor ventilation. #### 2.21.2 - Fire Prevention Pay attention to the following: Pre-trip Inspection. Make a complete inspection of the electrical, fuel, and exhaust systems, tires, and cargo. Be sure to check that the fire extinguisher is charged. En Route Inspection. Check the tires, wheels, and truck body for signs of heat whenever you stop during a trip. Follow Safe Procedures. Follow correct safety procedures for fueling the vehicle, using brakes, handling flares, and other activities that can cause a fire. Monitoring. Check the instruments and gauges often for signs of overheating and use the mirrors to look for signs of smoke from tires or the vehicle. Caution. Use normal caution in handling anything flammable. #### 2.21.3 - Fire Fighting Knowing how to fight fires is important. Drivers who didn't know what to do have made fires worse. Know how the fire extinguisher works. Study the instructions printed on the extinguisher before you need it. Here are some procedures to follow in case of fire. **Pull Off the Road.** The first step is to get the vehicle off the road and stop. In doing so: Park in an open area, away from buildings, trees, brush, other vehicles, or anything that might catch fire. Don't pull into a service station! Notify emergency services of your problem and your location. **Keep the Fire from Spreading.** Before trying to put out the fire, make sure that it doesn't spread any further. With an engine fire, turn off the engine as soon as you can. Don't open the hood if you can avoid it. Shoot foam through louvers, radiator, or from the vehicle's underside. For a cargo fire in a van or box trailer, keep the doors shut, especially if your cargo contains hazardous materials. Opening the van doors will supply the fire with oxygen and can cause it to burn very fast. **Extinguish the Fire.** Here are some rules to follow in putting out a fire: When using the extinguisher, stay as far away from the fire as possible. Aim at the source or base of the fire, not up in the flames. #### Use the Right Fire Extinguisher Figures 2.20 and 2.21 detail the type of fire extinguisher to use by class of fire. The B:C type fire extinguisher is designed to work on electrical fires and burning liquids. The A:B:C type is designed to work on burning wood, paper, and cloth as well. Water can be used on wood, paper, or cloth, but don't use water on an electrical fire (can cause shock) or a gasoline fire (it will spread the flames). A burning tire must be cooled. Lots of water may be required. If you're not sure what to use, especially on a hazardous materials fire, wait for firefighters. Position yourself upwind. Let the wind carry the extinguisher to the fire. Continue until whatever was burning has been cooled. Absence of smoke or flame does not mean the fire cannot restart. | | Class/Type of Fires | | | | |-------|---|--|--|--| | Class | Туре | | | | | A | Wood, Paper, Ordinary Combustibles Extinguish by Cooling and Quenching Using Water or Dry Chemicals | | | | | В | Gasoline, Oil, Grease, Other Greasy Liquids Extinguish by Smothering, Cooling or Heat Shielding using carbon Dioxide or Dry Chemicals | | | | | С | Electrical Equipment Fires Extinguish with Nonconducting Agents such as Carbon Dioxide or Dry Chemicals. DO NOT USE WATER. | | | | | D | Fires in Combustible Metals Extinguish by Using Specialized Extinguishing Powders | | | | Figure 2.20 | Class of Fire/Type of Extinguisher | | | | | |------------------------------------|----------------------------|--|--|--| | Class of Fire | Fire Extinguisher Type | | | | | B or C | Regular Dry Chemical | | | | | A, B, C, or D | Multi Purpose Dry Chemical | | | | | D | Purple K Dry Chemical | | | | | B or C | KCL Dry Chemical | | | | | D | Dry Powder Special | | | | | | Compound | | | | | B or C | Carbon Dioxide (Dry) | | | | | B or C | Halogenated Agent (Gas) | | | | | Α | Water | | | | | Α | Water With Anti-Freeze | | | | | A or B | Water, Loaded Steam Style | | | | | B, On Some A | , On Some A Foam | | | | Figure 2.21 ### Subsections 2.20 and 2.21 Test Your Knowledge - 1. What are some things to do at an accident scene to prevent another accident? - Name two causes of tire fires. - 3. What kinds of fires is a B:C extinguisher not good for? - 4. When using your extinguisher, should you get as close as possible to the fire? - 5. Name some causes of vehicle fires. These questions may be on the test. If you can't answer them all, re-read subsections 2.20 and 2.21. ### 2.22 – Alcohol, Other Drugs, and Driving #### 2.22.1 - Alcohol and Driving Drinking alcohol and then driving is very dangerous and a serious problem. People who drink alcohol are involved in traffic accidents resulting in over 20,000 deaths every year. Alcohol impairs muscle coordination, reaction time, depth perception, and night vision. It also affects the parts of the brain that control judgment and inhibition. For some people, one drink is all it takes to show signs of impairment. How Alcohol Works. Alcohol goes directly into the blood stream and is carried to the brain. After passing through the brain, a small percentage is removed in urine, perspiration, and by breathing, while the rest is carried to the liver. The liver can only process one-third an ounce of alcohol per hour, which is considerably less than the alcohol in a standard drink. This is a fixed rate, so only time, not black coffee or a cold shower, will sober you up. If you have drinks faster than your body can get rid of them, you will have more alcohol in your body, and your driving will be more affected. The Blood Alcohol Concentration (BAC) commonly measures the amount of alcohol in your body. See Figure 2.22. All of the following drinks contain the same amount of alcohol: A 12-ounce glass of 5% beer. A 5-ounce glass of 12% wine. A 1 1/2-ounce shot of 80 proof liquor. #### What Is a Drink? It is the alcohol in drinks that affects human performance. It doesn't make any difference whether that alcohol comes from "a couple of beers," or from two glasses of wine, or two shots of hard liquor. Approximate Blood Alcohol Content | Drinks | Body Weight in Pounds | | | | | Effects | | | | |--------|-----------------------|-----|-----|-----|-----|---------|-----|-----|---| | | 100 | 120 | 140 | 160 | 180 | 200 | 220 | 240 | | | 0 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | Only Safe
Driving Limit | | 1 | .04 | .03 | .03 | .02 | .02
 .02 | .02 | .02 | Impairment
Begins | | 2 | .08 | .06 | .05 | .05 | .04 | .04 | .03 | .03 | Driving Skills Significantly Affected
Criminal Penalties | | 3 | .11 | .09 | .08 | .07 | .06 | .06 | .05 | .05 | Skills | | 4 | .15 | .12 | .11 | .09 | .08 | .08 | .07 | .06 | Skills Significantly .
Criminal Penalties | | 5 | .19 | .16 | .13 | .12 | .11 | .09 | .09 | .08 | antly A | | 6 | .23 | .19 | .16 | .14 | .13 | .11 | .10 | .09 | ffected | | 7 | .26 | .22 | .19 | .16 | .15 | .13 | .12 | .11 | 다 등 | | 8 | .30 | .25 | .21 | .19 | .17 | .15 | .14 | .13 | gally In
iminal | | 9 | .34 | .28 | .24 | .21 | .19 | .17 | .15 | .14 | Legally Intoxicated
Criminal Penalties | | 10 | .38 | .31 | .27 | .23 | .21 | .19 | .17 | .16 | ed
be | Subtract .01% for each 40 minutes of drinking. One drink is 1.5 oz. of 80 proof liquor, 12 oz. of beer, or 5 oz. of table wine. Figure 2.22 What Determines Blood Alcohol Concentration? BAC is determined by the amount of alcohol you drink (more alcohol means higher BAC), how fast you drink (faster drinking means higher BAC), and your weight (a small person doesn't have to drink as much to reach the same BAC). Alcohol and the Brain. Alcohol affects more and more of the brain as BAC builds up. The first part of the brain affected controls judgment and self-control. One of the bad things about this is it can keep drinkers from knowing they are getting drunk. And, of course, good judgment and self-control are absolutely necessary for safe driving. As BAC continues to build up, muscle control, vision, and coordination are affected more and more. Effects on driving may include: Straddling lanes. Quick, jerky starts. Not signaling, failure to use lights. Running stop signs and red lights. Improper passing. See Figure 2.23. ### Effects Of Increasing Blood Alcohol Content Blood Alcohol Content is the amount of alcohol in your blood recorded in milligrams of alcohol per 100 milliliters of blood. Your BAC depends on the amount of blood (which increases with weight) and the amount of alcohol you consume over time (how fast you drink). The faster you drink, the higher your BAC, as the liver can only handle about one drink per hour—the rest builds up in your blood. | BAC | Effects on Body | Effects on Driving
Condition | |------|---|---| | .02 | Mellow feeling, slight body warmth. | Less inhibited. | | .05 | Noticeable relaxation. | Less alert, less self-
focused, coordination
impairment begins. | | .08 | Definite impairment in coordination & judgment . | Drunk driving limit, impaired coordination & judgment. | | .10* | Noisy, possible embarrassing behavior, mood swings. | Reduction in reaction time. | | .15 | Impaired balance & movement, clearly drunk. | Unable to drive. | | .30 | Many lose consciousness. | | | .40 | Most lose consciousness, some die. | | | .50 | Breathing stops, many die. | | | BAC | of .10 means that 1/10 of | 1 % (or 1/1000) of your | total blood content is alcohol. Figure 2.23 These effects mean increased chances of a crash and chances of losing your driver's license. Accident statistics show that the chance of a crash is much greater for drivers who have been drinking than for drivers who have not. **How Alcohol Affects Driving.** All drivers are affected by drinking alcohol. Alcohol affects judgment, vision, coordination, and reaction time. It causes serious driving errors, such as: Increased reaction time to hazards. Driving too fast or too slow. Driving in the wrong lane. Running over the curb. Weaving. #### 2.22.2 - Other Drugs Besides alcohol, other legal and illegal drugs are being used more often. Laws prohibit possession or use of many drugs while on duty. They prohibit being under the influence of any "controlled substance," amphetamines (including "pep pills," "uppers," and "bennies"), narcotics, or any other substance, which can make the driver unsafe. This could include a variety of prescription and over-the-counter drugs (cold medicines), which may make the driver drowsy or otherwise affect safe driving ability. However, possession and use of a drug given to a driver by a doctor is permitted if the doctor informs the driver that it will not affect safe driving ability. Pay attention to warning labels for legitimate drugs and medicines, and to doctor's orders regarding possible effects. Stay away from illegal drugs. Don't use any drug that hides fatigue--the only cure for fatigue is rest. Alcohol can make the effects of other drugs much worse. The safest rule is don't mix drugs with driving at all. Use of drugs can lead to traffic accidents resulting in death, injury, and property damage. Furthermore, it can lead to arrest, fines, and jail sentences. It can also mean the end of a person's driving career. #### 2.23 - Staying Alert and Fit to Drive Driving a vehicle for long hours is tiring. Even the best of drivers will become less alert. However, there are things that good drivers do to help stay alert and safe. #### 2.23.1 - Be Ready to Drive Get Enough Sleep. Sleep is not like money. You can't save it up ahead of time and you can't borrow it. But, just as with money, you can go into debt with it. If you don't sleep enough, you "owe" more sleep to yourself. This debt can only be paid off by sleeping. You can't overcome it with willpower, and it won't go away by itself. The average person needs seven or eight hours of sleep every 24 hours. Leaving on a long trip when you're already tired is dangerous. If you have a long trip scheduled, make sure that you get enough sleep before you go. Schedule Trips Safely. Try to arrange your schedule so you are not in "sleep debt" before a long trip. Your body gets used to sleeping during certain hours. If you are driving during those hours, you will be less alert. If possible, try to schedule trips for the hours you are normally awake. Many heavy motor vehicle accidents occur between midnight and 6 a.m. Tired drivers can easily fall asleep at these times, especially if they don't regularly drive at those hours. Trying to push on and finish a long trip at these times can be very dangerous. **Exercise Regularly.** Resistance to fatigue and improved sleep are among the benefits of regular exercise. Try to incorporate exercise into your daily life. Instead of sitting and watching TV in your sleeper, walk or jog a few laps around the parking lot. A little bit of daily exercise will give you energy throughout the day. **Eat Healthy.** It is often hard for drivers to find healthy food. But with a little extra effort, you can eat healthy, even on the road. Try to find restaurants with healthy, balanced meals. If you must eat at fast-food restaurants, pick low-fat items. Another simple way to reduce your caloric intake is to eliminate fattening snacks. Instead, try fruit or vegetables. **Avoid Medication.** Many medicines can make you sleepy. Those that do have a label warning against operating vehicles or machinery. The most common medicine of this type is an ordinary cold pill. If you have to drive with a cold, you are better off suffering from the cold than from the effects of the medicine. Visit Your Doctor. Regular checkups literally can be lifesavers. Illnesses such as diabetes, heart disease, and skin and colon cancer can be detected easily and treated if found in time. You should consult your physician or a local sleep disorder center if you suffer from frequent daytime sleepiness, have difficulty sleeping at night, take frequent naps, fall asleep at strange times, snore loudly, gasp and choke in your sleep, and/or wake up feeling as though you have not had enough sleep. #### 2.23.2 - While You Are Driving **Keep Cool.** A hot, poorly ventilated vehicle can make you sleepy. Keep the window or vent cracked open or use the air conditioner, if you have one. **Take Breaks.** Short breaks can keep you alert. But the time to take them is before you feel really drowsy or tired. Stop often. Walk around and inspect your vehicle. It may help to do some physical exercises. Be sure to take a mid-afternoon break and plan to sleep between midnight and 6 a.m. Recognize the Danger Signals of Drowsy Driving. Sleep is not voluntary. If you're drowsy, you can fall asleep and never even know it. If you are drowsy, you are likely to have "micro sleeps"—brief naps that last around four or five seconds. At 55 miles an hour, that's more than 100 yards, and plenty of time for a crash. Even if you are not aware of being drowsy, if you have a sleep debt you are still at risk. Here are a few ways to tell if you're about to fall asleep. If you experience any of these danger signs, take them as a warning that you could fall asleep without meaning to. Your eyes close or go out of focus by themselves. You have trouble keeping your head up. You can't stop yawning. You have wandering, disconnected thoughts. You don't remember driving the last few miles. You drift between lanes, tailgate, or miss traffic signs. You keep jerking the truck back into the lane. You have drifted off the road and narrowly missed crashing. If you have even one of these symptoms, you may be in danger of falling asleep. Pull off the road in a safe place and take a nap. #### 2.23.3 - When You Do Become Sleepy When you are sleepy, trying to "push on" is far more dangerous than most drivers think. It is a major cause of fatal accidents. Here are some important rules to follow. **Stop to Sleep.** When your body needs sleep, sleep is the only thing that will work. If you have to make a stop anyway, make it whenever you feel the first signs of sleepiness, even if it is earlier than you planned. By getting up a little earlier the next day, you can keep on schedule without the danger of driving while you are not alert. **Take a Nap.** If you can't stop for the night, at least pull off at a safe place, such as a rest area or truck stop, and take a nap. A nap as
short as a half-hour will do more to overcome fatigue than a half-hour coffee stop. **Avoid Drugs.** There are no drugs that can overcome being tired. While they may keep you awake for a while, they won't make you alert. And eventually, you'll be even more tired than if you hadn't taken them at all. Sleep is the only thing that can overcome fatigue. **Do Not.** Do not rely on coffee or another source of caffeine to keep you awake. Do not count on the radio, an open window, or other tricks to keep you awake. #### 2.23.4 - Illness Once in a while, you may become so ill that you cannot operate a motor vehicle safely. If this happens to you, you must not drive. However, in case of an emergency, you may drive to the nearest place where you can safely stop. ### 2.24 – Hazardous Materials Rules For All Commercial Drivers All drivers should know something about hazardous materials. You must be able to recognize hazardous cargo, and you must know whether or not you can haul it without having a hazardous materials endorsement on your CDL license. #### 2.24.1 – What Are Hazardous Materials? Hazardous materials are products that pose a risk to health, safety, and property during transportation. See Figure 2.24. | Hazard Class Definitions | | | | | |--------------------------|---|---|--|--| | Class | Class Name | Example | | | | 1 | Explosives | Ammunition,
Dynamite,
Fireworks | | | | 2 | Gases | Propane, Oxygen,
Helium | | | | 3 | Flammable | Gasoline Fuel,
Acetone | | | | 4 | Flammable
Solids | Matches, Fuses | | | | 5 | Oxidizers | Ammonium
Nitrate, Hydrogen
Peroxide | | | | 6 | Poisons | Pesticides,
Arsenic | | | | 7 | Radioactive | Uranium,
Plutonium | | | | 8 | Corrosives | Hydrochloric Acid,
Battery Acid | | | | 9 | Miscellaneous
Hazardous
Materials | Formaldehyde,
Asbestos | | | | None | ORM-D (Other
Regulated
Material-
Domestic) | Hair Spray or
Charcoal | | | | None | Combustible
Liquids | Fuel Oils, Lighter
Fluid | | | Figure 2.24 #### 2.24.2 - Why Are There Rules? You must follow the many rules about transporting hazardous materials. The intent of the rules is to: Contain the product. Communicate the risk. Ensure safe drivers and equipment. **To Contain the Product.** Many hazardous products can injure or kill on contact. To protect drivers and others from contact, the rules tell shippers how to package safely. Similar rules tell drivers how to load, transport, and unload bulk tanks. These are containment rules. **To Communicate the Risk.** The shipper uses a shipping paper and diamond shaped hazard labels to warn dockworkers and drivers of the risk. After an accident or hazardous material spill or leak, you may be injured and unable to communicate the hazards of the materials you are transporting. Firefighters and police can prevent or reduce the amount of damage or injury at the scene if they know what hazardous materials are being transported. Your life, and the lives of others, may depend on quickly locating the hazardous materials shipping papers. For that reason, you must identify shipping papers related to hazardous materials or keep them on top of other shipping papers. You must also keep shipping papers: In a pouch on the driver's door, or In clear view within reach while driving, or On the driver's seat when out of the vehicle. #### 2.24.3 - Lists of Regulated Products **Placards** are used to warn others of hazardous materials. Placards are signs put on the outside of a vehicle that identify the hazard class of the cargo. A placarded vehicle must have at least four identical placards. They are put on the front, rear, and both sides. Placards must be readable from all four directions. They must be at least 10 3/4 inches square, turned upright on a point, in a diamond shape. Cargo tanks and other bulk packaging display the identification number of their contents on placards or orange panels. Identification Numbers are a four digit code used by first responders to identify hazardous materials. An identification number may be used to identify more than one chemical on shipping papers. The identification number will be preceded by the letters "NA" or "UN". The US DOT Emergency Response Guidebook (ERG) lists the chemicals and the identification numbers assigned to them. Not all vehicles carrying hazardous materials need to have placards. The rules about placards are given in Section 9 of this manual. You can drive a vehicle that carries hazardous materials if it does not require placards. If it requires placards, you cannot drive it unless your driver license has the hazardous materials endorsement. See Figure 2.25. The rules require all drivers of placarded vehicles to learn how to safely load and transport hazardous products. They must have a commercial driver license with the hazardous materials endorsement. To get the required endorsement, you must pass a written test on material found in Section 9 of this manual. A tank endorsement is required for certain vehicles that transport liquids or gases. The liquid or gas does not have to be a hazardous material. A tank endorsement is only required if your vehicle needs a Class A or B CDL and your vehicle has a permanently mounted cargo tank of any capacity; or your vehicle is carrying a portable tank with a capacity of 1,000 gallons or more. Drivers who need the hazardous materials endorsement must learn the placard rules. If you do not know if your vehicle needs placards, ask your employer. Never drive a vehicle needing placards unless you have the hazardous materials endorsement. To do so is a crime. When stopped, you will be cited and you will not be allowed to drive your truck.. It will cost you time and money. A failure to placard when needed may risk your life and others if you have an accident. Emergency help will not know of your hazardous cargo. Figure 2.25 Hazardous materials drivers must also know which products they can load together, and which they cannot. These rules are also in Section 9. Before loading a truck with more than one type of product, you must know if it is safe to load them together. If you do not know, ask your employer and consult the regulations. #### Subsections 2.22, 2.23, and 2.24 Test Your Knowledge - 1. Common medicines for colds can make you sleepy. True or False? - 2. What should you do if you become sleepy while driving? - 3. Coffee and a little fresh air will help a drinker sober up. True or False? - 4. What is a hazardous materials placard? - 5. Why are placards used? - 6. What is "sleep debt"? - 7. What are the danger signals of drowsy driving? These questions may be on the test. If you can't answer them all, re-read subsections 2.22, 2.23, and 2.24. This page left intentionally blank. # Section 3 TRANSPORTING CARGO SAFELY #### **This Section Covers** - Inspecting Cargo - Cargo Weight and Balance - Securing Cargo - Cargo Needing Special Attention This section tells you about hauling cargo safely. You must understand basic cargo safety rules to get a CDL. If you load cargo wrong or do not secure it, it can be a danger to others and yourself. Loose cargo that falls off a vehicle can cause traffic problems and others could be hurt or killed. Loose cargo could hurt or kill you during a quick stop or crash. Your vehicle could be damaged by an overload. Steering could be affected by how a vehicle is loaded, making it more difficult to control the vehicle. Whether or not you load and secure the cargo yourself, you are responsible for: Inspecting your cargo. Recognizing overloads and poorly balanced weight. Knowing your cargo is properly secured and does not obscure your view ahead or to the sides Knowing your cargo does not restrict your access to emergency equipment. If you intend to carry hazardous material that requires placards on your vehicle, you will also need to have a hazardous materials endorsement. Section 9 of this manual has the information you need to pass the hazardous materials test. #### 3.1 - Inspecting Cargo As part of your pre-trip inspection, make sure the truck is not overloaded and the cargo is balanced and secured properly. After Starting. Inspect the cargo and its securing devices again within the first 50 miles after beginning a trip. Make any adjustments needed. Re-check. Re-check the cargo and securing devices as often as necessary during a trip to keep the load secure. You need to inspect again: After you have driven for 3 hours or 150 miles. After every break you take during driving. Federal, state, and local regulations for commercial vehicle weight, securing cargo, covering loads, and where you can drive large vehicles vary from place to place. Know the rules where you will be driving. #### 3.2 - Weight and Balance You are responsible for not being overloaded. The following are some definitions of weight you should know. #### 3.2.1 - Definitions You Should Know **Gross Vehicle Weight (GVW).** The total weight of a single vehicle plus its load. **Gross Combination Weight (GCW).** The total weight of a powered unit, plus trailer(s), plus the cargo. Gross Vehicle Weight Rating (GVWR). The maximum GVW specified by the manufacturer for a single vehicle plus its load. Gross Combination Weight Rating (GCWR). The maximum GCW specified by the manufacturer for a specific combination of vehicles plus its load. **Axle Weight.** The weight transmitted to the ground by one axle or one set of axles. **Tire Load.** The maximum safe weight a tire can carry at a specified pressure. This rating is stated on the side of each tire. **Suspension Systems.** Suspension systems have a manufacturer's weight capacity rating. **Coupling Device Capacity.** Coupling devices are rated for the maximum weight they can pull and/or carry. #### 3.2.2 - Legal Weight Limits You must keep weights within legal limits. States have maximums for GVWs, GCWs, and axle weights. Often, maximum
axle weights are set by a bridge formula. A bridge formula permits less maximum axle weight for axles that are closer together. This is to prevent overloading bridges and roadways. Overloading can have bad effects on steering, braking, and speed control. Overloaded trucks have to go very slowly on upgrades. Worse, they may gain too much speed on downgrades. Stopping distance increases. Brakes can fail when forced to work too hard. During bad weather or in mountains, it may not be safe to operate at legal maximum weights. Take this into account before driving. #### 3.2.3 – Don't Be Top-heavy The height of the vehicle's center of gravity is very important for safe handling. A high center of gravity (cargo piled up high or heavy cargo on top) means you are more likely to tip over. It is most dangerous in curves, or if you have to swerve to avoid a hazard. It is very important to distribute the cargo so it is as low as possible. Put the heaviest parts of the cargo under the lightest parts. #### 3.2.4 - Balance the Weight Poor weight balance can make vehicle handling unsafe. Too much weight on the steering axle can cause hard steering. It can damage the steering axle and tires. Under-loaded front axles (caused by shifting weight too far to the rear) can make the steering axle weight too light to steer safely. Too little weight on the driving axles can cause poor traction. The drive wheels may spin easily. During bad weather, the truck may not be able to keep going. Weight that is loaded so there is a high center of gravity causes greater chance of rollover. On flat bed vehicles, there is also a greater chance that the load will shift to the side or fall off. See Figure 3.1. #### 3.3 - Securing Cargo #### 3.3.1 - Blocking and Bracing Blocking is used in the front, back, and/or sides of a piece of cargo to keep it from sliding. Blocking is shaped to fit snugly against cargo. It is secured to the cargo deck to prevent cargo movement. Bracing is also used to prevent movement of cargo. Bracing goes from the upper part of the cargo to the floor and/or walls of the cargo compartment. Figure 3.1 #### 3.3.2 - Cargo Tiedown On flatbed trailers or trailers without sides, cargo must be secured to keep it from shifting or falling off. In closed vans, tiedowns can also be important to prevent cargo shifting that may affect the handling of the vehicle. Tiedowns must be of the proper type and proper strength. Federal regulations require the aggregate working load limit of any securement system used to secure an article or group of articles against movement must be at least one-half times the weight of the article or group of articles. Proper tiedown equipment must be used, including ropes, straps, chains, and tensioning devices (winches, ratchets, clinching components). Tiedowns must be attached to the vehicle correctly (hooks, bolts, rails, rings). See figure 3.2. Figure 3.2 Cargo should have at least one tiedown for each ten feet of cargo. Make sure you have enough tiedowns to meet this need. No matter how small the cargo, it should have at least two tiedowns. There are special requirements for securing various heavy pieces of metal. Find out what they are if you are to carry such loads. #### 3.3.3 - Header Boards Front-end header boards ("headache racks") protect you from your cargo in case of a crash or emergency stop. Make sure the front-end structure is in good condition. The front-end structure should block the forward movement of any cargo you carry. #### 3.3.4 - Covering Cargo There are two basic reasons for covering cargo: To protect people from spilled cargo. To protect the cargo from weather. Spill protection is a safety requirement in many states. Be familiar with the laws in the states you drive in. You should look at your cargo covers in the mirrors from time to time while driving. A flapping cover can tear loose, uncovering the cargo, and possibly block your view or someone else's. #### 3.3.5 - Sealed and Containerized Loads Containerized loads generally are used when freight is carried part way by rail or ship. Delivery by truck occurs at the beginning and/or end of the journey. Some containers have their own tiedown devices or locks that attach directly to a special frame. Others have to be loaded onto flat bed trailers. They must be properly secured just like any other cargo. You cannot inspect sealed loads, but you should check that you don't exceed gross weight and axle weight limits. #### 3.4 - Cargo Needing Special Attention #### 3.4.1 - Dry Bulk Dry bulk tanks require special care because they have a high center of gravity, and the load can shift. Be extremely cautious (slow and careful) going around curves and making sharp turns. #### 3.4.2 – Hanging Meat Hanging meat (suspended beef, pork, lamb) in a refrigerated truck can be a very unstable load with a high center of gravity. Particular caution is needed on sharp curves such as off ramps and on ramps. Go slowly. #### 3.4.3 - Livestock Livestock can move around in a trailer, causing unsafe handling. With less than a full load, use false bulkheads to keep livestock bunched together. Even when bunched, special care is necessary because livestock can lean on curves. This shifts the center of gravity and makes rollover more likely. #### 3.4.4 - Oversized Loads Over-length, over-width, and/or overweight loads require special transit permits. Driving is usually limited to certain times. Special equipment may be necessary such as "wide load" signs, flashing lights, flags, etc. Such loads may require a police escort or pilot vehicles bearing warning signs and/or flashing lights. These special loads require special driving care. ### Section 3 Test Your Knowledge - 1. What four things related to cargo are drivers responsible for? - 2. How often must you stop while on the road to check your cargo? - 3. How is Gross Combination Weight Rating different from Gross Combination Weight? - 4. Name two situations where legal maximum weights may not be safe. - 5. What can happen if you don't have enough weight on the front axle? - 6. What is the minimum number of tiedowns for any flat bed load? - 7. What is the minimum number of tiedowns for a 20-foot load? - 8. Name the two basic reasons for covering cargo on an open bed. - 9. What must you check before transporting a sealed load? These questions may be on your test. If you can't answer them all, re-read Section 3. This page intentionally left blank. # Section 4 TRANSPORTING PASSENGERS SAFELY #### **This Section Covers** - Vehicle Inspection - Loading - On the Road - After-trip Vehicle Inspection - Prohibited Practices - Use of Brake-door Interlocks Bus drivers must have a commercial driver license if they drive a vehicle designed to seat more than 16 or more persons, including the driver. Bus drivers must have a passenger endorsement on their commercial driver license. To get the endorsement you must pass a knowledge test on Sections 2 and 4 of this manual. (If your bus has air brakes, you must also pass a knowledge test on Section 5.) You must also pass the skills tests required for the class of vehicle you drive. School bus drivers must have a school bus (S) endorsement which requires an additional knowledge test and possibly skills test. See Section 10. #### 4.1 - Vehicle Inspection Before driving your bus, you must be sure it is safe. You must review the inspection report made by the previous driver. Only if defects reported earlier have been certified as repaired or not needed to be repaired, should you sign the previous driver's report. This is your certification that the defects reported earlier have been fixed. #### 4.1.1 – Vehicle Systems Make sure these things are in good working order before driving: Service brakes, including air hose couplings (if your bus has a trailer or semitrailer). Parking brake. Steering mechanism. Lights and reflectors. Tires (front wheels must not have recapped or regrooved tires). Horn. Windshield wiper or wipers. Rear-vision mirror or mirrors. Coupling devices (if present). Wheels and rims. Emergency equipment. #### 4.1.2 - Access Doors and Panels As you check the outside of the bus, close any open emergency exits. Also, close any open access panels (for baggage, restroom service, engine, etc.) before driving. #### 4.1.3 - Bus Interior People sometimes damage unattended buses. Always check the interior of the bus before driving to ensure rider safety. Aisles and stairwells should always be clear. The following parts of your bus must be in safe working condition: Each handhold and railing. Floor covering. Signaling devices, including the restroom emergency buzzer, if the bus has a restroom. Emergency exit handles. The seats must be safe for riders. All seats must be securely fastened to the bus. Never drive with an open emergency exit door or window. The "Emergency Exit" sign on an emergency door must be clearly visible. If there is a red emergency door light, it must work. Turn it on at night or any other time you use your outside lights. #### 4.1.4 - Roof Hatches You may lock some emergency roof hatches in a partly open position for fresh air. Do not leave them open as a regular practice. Keep in mind the bus's higher clearance while driving with them open. Make sure your bus has the fire extinguisher and emergency reflectors required by law. The bus must also have spare electrical fuses, unless equipped with circuit breakers. #### 4.1.5 - Use Your Seatbelt! The driver's seat should have a seat belt. Always use it for safety. | Hazard Class Definitions | | | | | |--------------------------|---|---|--|--| | Class | Class Name | Example | | | | 1 | Explosives | Ammunition,
Dynamite,
Fireworks | | | | 2 | Gases | Propane, Oxygen,
Helium | | | | 3 | Flammable | Gasoline Fuel,
Acetone | | | | 4 | Flammable
Solids | Matches, Fuses | | | | 5 | Oxidizers | Ammonium
Nitrate,
Hydrogen
Peroxide | | | | 6 | Poisons | Pesticides,
Arsenic | | | | 7 | Radioactive | Uranium,
Plutonium | | | | 8 | Corrosives | Hydrochloric Acid,
Battery Acid | | | | 9 | Miscellaneous
Hazardous
Materials | Formaldehyde,
Asbestos | | | | None | ORM-D (Other
Regulated
Material-
Domestic) | Hair Spray or
Charcoal | | | | None | Combustible
Liquids | Fuel Oils, Lighter
Fluid | | | Figure 4.1 #### 4.2 - Loading and Trip Start Do not allow riders to leave carry-on baggage in a doorway or aisle. There should be nothing in the aisle that might trip other riders. Secure baggage and freight in ways that avoid damage and: Allow the driver to move freely and easily. Allow riders to exit by any window or door in an emergency. Protect riders from injury if carry-ons fall or shift. #### 4.2.1 - Hazardous Materials Watch for cargo or baggage containing hazardous materials. Most hazardous materials cannot be carried on a bus. The Federal Hazardous Materials Table shows which materials are hazardous. They pose a risk to health, safety, and property during transportation. The rules require shippers to mark containers of hazardous material with the material's name, identification number, and hazard label. There are nine different four-inch, diamond-shaped hazard labels. See Figure 4.1. Watch for the diamond-shaped labels. Do not transport any hazardous material unless you are sure the rules allow it. #### 4.2.2 – Forbidden Hazardous Materials Buses may carry small-arms ammunition labeled ORM-D, emergency hospital supplies, and drugs. You can carry small amounts of some other hazardous materials if the shipper cannot send them any other way. Buses must never carry: Division 2.3 poison gas, liquid Class 6 poison, tear gas, irritating material. More than 100 pounds of solid Class 6 poisons. Explosives in the space occupied by people, except small arms ammunition. Labeled radioactive materials in the space occupied by people. More than 500 pounds total of allowed hazardous materials, and no more than 100 pounds of any one class. Riders sometimes board a bus with an unlabeled hazardous material. Do not allow riders to carry on common hazards such as car batteries or gasoline. #### 4.2.3 - Standee Line No rider may stand forward of the rear of the driver's seat. Buses designed to allow standing must have a two-inch line on the floor or some other means of showing riders where they cannot stand. This is called the standee line. All standing riders must stay behind it. #### 4.2.4 - At Your Destination When arriving at the destination or intermediate stops announce: The location. Reason for stopping. Next departure time. Bus number. Remind riders to take carry-ons with them if they get off the bus. If the aisle is on a lower level than the seats, remind riders of the step-down. It is best to tell them before coming to a complete stop. Charter bus drivers should not allow riders on the bus until departure time. This will help prevent theft or vandalism of the bus. #### 4.3 - On the Road #### 4.3.1 - Passenger Supervision Many charter and intercity carriers have passenger comfort and safety rules. Mention rules about smoking, drinking, or use of radio and tape players at the start of the trip. Explaining the rules at the start will help to avoid trouble later on. While driving, scan the interior of your bus as well as the road ahead, to the sides, and to the rear. You may have to remind riders about rules, or to keep arms and heads inside the bus. #### 4.3.2 - At Stops Riders can stumble when getting on or off, and when the bus starts or stops. Caution riders to watch their step when leaving the bus. Wait for them to sit down or brace themselves before starting. Starting and stopping should be as smooth as possible to avoid rider injury. Occasionally, you may have a drunk or disruptive rider. You must ensure this rider's safety as well as that of others. Don't discharge such riders where it would be unsafe for them. It may be safer at the next scheduled stop or a well-lighted area where there are other people. Many carriers have guidelines for handling disruptive riders. #### 4.3.3 - Common Accidents The Most Common Bus Accidents. Bus accidents often happen at intersections. Use caution, even if a signal or stop sign controls other traffic. School and mass transit buses sometimes scrape off mirrors or hit passing vehicles when pulling out from a bus stop. Remember the clearance your bus needs, and watch for poles and tree limbs at stops. Know the size of the gap your bus needs to accelerate and merge with traffic. Wait for the gap to open before leaving the stop. Never assume other drivers will brake to give you room when you signal or start to pull out. #### 4.3.4 - Speed on Curves Crashes on curves that kill people and destroy buses result from excessive speed, often when rain or snow has made the road slippery. Every banked curve has a safe "design speed." In good weather, the posted speed is safe for cars but it may be too high for many buses. With good traction, the bus may roll over; with poor traction, it might slide off the curve. Reduce speed for curves! If your bus leans toward the outside on a banked curve, you are driving too fast. #### 4.3.5 – Railroad-highway Crossings Stops #### Stop at RR Crossings: Stop your bus between 15 and 50 feet before railroad crossings. Listen and look in both directions for trains. You should open your forward door if it improves your ability to see or hear an approaching train. Before crossing after a train has passed, make sure there isn't another train coming in the other direction on other tracks. If your bus has a manual transmission, never change gears while crossing the tracks. You do not have to stop, but must slow down and carefully check for other vehicles: - At streetcar crossings. - Where a policeman or flagman is directing traffic. - If a traffic signal is green. - At crossings marked as "exempt" or "abandoned." #### 4.3.6 - Drawbridges **Stop at Drawbridges.** Stop at drawbridges that do not have a signal light or traffic control attendant. Stop at least 50 feet before the draw of the bridge. Look to make sure the draw is completely closed before crossing. You do not need to stop, but must slow down and make sure it's safe, when: There is a traffic light showing green. The bridge has an attendant or traffic officer who controls traffic whenever the bridge opens. #### 4.4 - After-trip Vehicle Inspection Inspect your bus at the end of each shift. If you work for an interstate carrier, you must complete a written inspection report for each bus driven. The report must specify each bus and list any defect that would affect safety or result in a breakdown. If there are no defects, the report should say so. Riders sometimes damage safety-related parts such as handholds, seats, emergency exits, and windows. If you report this damage at the end of a shift, mechanics can make repairs before the bus goes out again. Mass transit drivers should also make sure passenger signaling devices and brakedoor interlocks work properly. #### 4.5 - Prohibited Practices Avoid fueling your bus with riders on board unless absolutely necessary. Never refuel in a closed building with riders on board. Don't talk with riders, or engage in any other distracting activity, while driving. Do not tow or push a disabled bus with riders aboard the vehicle, unless getting off would be unsafe. Only tow or push the bus to the nearest safe spot to discharge passengers. Follow your employer's guidelines on towing or pushing disabled buses. #### 4.6 - Use of Brake-door Interlocks Urban mass transit coaches may have a brake and accelerator interlock system. The interlock applies the brakes and holds the throttle in idle position when the rear door is open. The interlock releases when you close the rear door. Do not use this safety feature in place of the parking brake. ### Section 4 Test Your Knowledge - 1. Name some things to check in the interior of a bus during a pre-trip inspection. - 2. What are some hazardous materials you can transport by bus? - 3. What are some hazardous materials you can't transport by bus? - 4. What is a standee line? - 5. Does it matter where you make a disruptive passenger get off the bus? - 6. How far from a railroad crossing should you stop? - 7. When must you stop before crossing a drawbridge? - 8. Describe from memory the "prohibited practices" listed in the manual. - 9. The rear door of a transit bus has to be open to put on the parking brake. True or False? These questions may be on your test. If you can't answer them all, re-read Section 4. ## Section 5 AIR BRAKES #### **This Section Covers** - Air Brake System Parts - Dual Air Brake Systems - Inspecting Air Brakes - Using Air Brakes This section tells you about air brakes. If you want to drive a truck or bus with air brakes, or pull a trailer with air brakes, you need to read this section. If you want to pull a trailer with air brakes, you also need to read Section 6, Combination Vehicles. Air brakes use compressed air to make the brakes work. Air brakes are a good and safe way of stopping large and heavy vehicles, but the brakes must be well maintained and used properly. Air brakes are really three different braking systems: service brake, parking brake, and emergency brake. The service brake system applies and releases the brakes when you use the brake pedal during normal driving. The parking brake system applies and releases the parking brakes when you use the parking brake control. The emergency brake system uses parts of the service and parking brake systems to stop the vehicle in a brake system failure. The parts of these systems are discussed in greater detail below. #### 5.1 - The Parts of an Air Brake System There are many parts to an air brake system. You should know about the parts discussed here. #### 5.1.1 - Air Compressor The air compressor pumps air into the air storage tanks
(reservoirs). The air compressor is connected to the engine through gears or a v-belt. The compressor may be air cooled or may be cooled by the engine cooling system. It may have its own oil supply or be lubricated by engine oil. If the compressor has its own oil supply, check the oil level before driving. #### 5.1.2 – Air Compressor Governor The governor controls when the air compressor will pump air into the air storage tanks. When air tank pressure rises to the "cut-out" level (around 125 pounds per-square-inch or "psi"), the governor stops the compressor from pumping air. When the tank pressure falls to the "cut-in" pressure (around 100 psi), the governor allows the compressor to start pumping again. #### 5.1.3 - Air Storage Tanks Air storage tanks are used to hold compressed air. The number and size of air tanks varies among vehicles. The tanks will hold enough air to allow the brakes to be used several times, even if the compressor stops working. #### 5.1.4 - Air Tank Drains Compressed air usually has some water and some compressor oil in it, which is bad for the air brake system. For example, the water can freeze in cold weather and cause brake failure. The water and oil tend to collect in the bottom of the air tank. Be sure that you drain the air tanks completely. Each air tank is equipped with a drain valve in the bottom. There are two types: Manually operated by turning a quarter turn or by pulling a cable. You must drain the tanks yourself at the end of each day of driving. See Figure 5.1. Automatic--the water and oil are automatically expelled. These tanks may be equipped for manual draining as well. Automatic air tanks are available with electric heating devices. These help prevent freezing of the automatic drain in cold weather. Figure 5.1 #### 5.1.5 - Alcohol Evaporator Some air brake systems have an alcohol evaporator to put alcohol into the air system. This helps to reduce the risk of ice in air brake valves and other parts during cold weather. Ice inside the system can make the brakes stop working. Check the alcohol container and fill up as necessary, every day during cold weather. Daily air tank drainage is still needed to get rid of water and oil. (Unless the system has automatic drain valves.) #### 5.1.6 - Safety Valve A safety relief valve is installed in the first tank the air compressor pumps air to. The safety valve protects the tank and the rest of the system from too much pressure. The valve is usually set to open at 150 psi. If the safety valve releases air, something is wrong. Have the fault fixed by a mechanic. #### 5.1.7 - The Brake Pedal You put on the brakes by pushing down the brake pedal. (It is also called the foot valve or treadle valve.) Pushing the pedal down harder applies more air pressure. Letting up on the brake pedal reduces the air pressure and releases the brakes. Releasing the brakes lets some compressed air go out of the system, so the air pressure in the tanks is reduced. It must be made up by the air compressor. Pressing and releasing the pedal unnecessarily can let air out faster than the compressor can replace it. If the pressure gets too low, the brakes won't work. #### 5.1.8 - Foundation Brakes Foundation brakes are used at each wheel. The most common type is the s-cam drum brake. The parts of the brake are discussed below. Brake Drums, Shoes, and Linings. Brake drums are located on each end of the vehicle's axles. The wheels are bolted to the drums. The braking mechanism is inside the drum. To stop, the brake shoes and linings are pushed against the inside of the drum. This causes friction, which slows the vehicle (and creates heat). The heat a drum can take without damage depends on how hard and how long the brakes are used. Too much heat can make the brakes stop working. **S-cam Brakes.** When you push the brake pedal, air is let into each brake chamber. Air pressure pushes the rod out, moving the slack adjuster, thus twisting the brake camshaft. This turns the s-cam (so called because it is shaped like the letter "S"). The s-cam forces the brake shoes away from one another and presses them against the inside of the brake drum. When you release the brake pedal, the s-cam rotates back and a spring pulls the brake shoes away from the drum, letting the wheels roll freely again. See Figure 5.2. Figure 5.2 Wedge Brakes. In this type of brake, the brake chamber push rod pushes a wedge directly between the ends of two brake shoes. This shoves them apart and against the inside of the brake drum. Wedge brakes may have a single brake chamber, or two brake chambers, pushing wedges in at both ends of the brake shoes. Wedge type brakes may be self-adjusting or may require manual adjustment. **Disc Brakes.** In air-operated disc brakes, air pressure acts on a brake chamber and slack adjuster, like s-cam brakes. But instead of the s-cam, a "power screw" is used. The pressure of the brake chamber on the slack adjuster turns the power screw. The power screw clamps the disc or rotor between the brake lining pads of a caliper, similar to a large c-clamp. Wedge brakes and disc brakes are less common than s-cam brakes. #### 5.1.9 - Supply Pressure Gauges All vehicles with air brakes have a pressure gauge connected to the air tank. If the vehicle has a dual air brake system, there will be a gauge for each half of the system. (Or a single gauge with two needles.) Dual systems will be discussed later. These gauges tell you how much pressure is in the air tanks. #### 5.1.10 - Application Pressure Gauge This gauge shows how much air pressure you are applying to the brakes. (This gauge is not on all vehicles.) Increasing application pressure to hold the same speed means the brakes are fading. You should slow down and use a lower gear. The need for increased pressure can also be caused by brakes out of adjustment, air leaks, or mechanical problems. #### 5.1.11 - Low Air Pressure Warning A low air pressure warning signal is required on vehicles with air brakes. A warning signal you can see must come on before the air pressure in the tanks falls below 60 psi. (Or one half the compressor governor cutout pressure on older vehicles.) The warning is usually a red light. A buzzer may also come on. Another type of warning is the "wig wag." This device drops a mechanical arm into your view when the pressure in the system drops below 60 psi. An automatic wig wag will rise out of your view when the pressure in the system goes above 60 psi. The manual reset type must be placed in the "out of view" position manually. It will not stay in place until the pressure in the system is above 60 psi. On large buses it is common for the low pressure warning devices to signal at 80-85 psi. #### 5.1.12 – Stop Light Switch Drivers behind you must be warned when you put your brakes on. The air brake system does this with an electric switch that works by air pressure. The switch turns on the brake lights when you put on the air brakes. #### 5.1.13 – Front Brake Limiting Valve Some older vehicles (made before 1975) have a front brake limiting valve and a control in the cab. The control is usually marked "normal" and "slippery." When you put the control in the "slippery" position, the limiting valve cuts the "normal" air pressure to the front brakes by half. Limiting valves were used to reduce the chance of the front wheels skidding on slippery surfaces. However, they actually reduce the stopping power of the vehicle. Front wheel braking is good under all conditions. Tests have shown front wheel skids from braking are not likely even on ice. Make sure the control is in the "normal" position to have normal stopping power. Many vehicles have automatic front wheel limiting valves. They reduce the air to the front brakes except when the brakes are put on very hard (60 psi or more application pressure). These valves cannot be controlled by the driver. #### 5.1.14 - Spring Brakes All trucks, truck tractors, and buses must be equipped with emergency brakes and parking brakes. They must be held on by mechanical force (because air pressure can eventually leak away). Spring brakes are usually used to meet these needs. When driving, powerful springs are held back by air pressure. If the air pressure is removed, the springs put on the brakes. A parking brake control in the cab allows the driver to let the air out of the spring brakes. This lets the springs put the brakes on. A leak in the air brake system, which causes all the air to be lost, will also cause the springs to put on the brakes. Tractor and straight truck spring brakes will come fully on when air pressure drops to a range of 20 to 45 psi (typically 20 to 30 psi). Do not wait for the brakes to come on automatically. When the low air pressure warning light and buzzer first come on, bring the vehicle to a safe stop right away, while you can still control the brakes. The braking power of spring brakes depends on the brakes being in adjustment. If the brakes are not adjusted properly, neither the regular brakes nor the emergency/parking brakes will work right. #### 5.1.15 - Parking Brake Controls In newer vehicles with air brakes, you put on the parking brakes using a diamond-shaped, yellow, push-pull control knob. You pull the knob out to put the parking brakes (spring brakes) on, and push it in to release them. On older vehicles, the parking brakes may be controlled by a lever. Use the parking brakes whenever you park. **Caution.** Never push the brake pedal down when the spring brakes are on. If you do, the brakes could be damaged by the combined forces of the springs and the air pressure. Many brake systems are designed so this will not happen. But not all systems are set up that way, and those that are may not always work. It is much better to develop the habit of not pushing the brake pedal down when the spring brakes are on. Modulating Control Valves. In some vehicles a control handle on the dash board may be used to apply the spring brakes gradually. This
is called a modulating valve. It is spring-loaded so you have a feel for the braking action. The more you move the control lever, the harder the spring brakes come on. They work this way so you can control the spring brakes if the service brakes fail. When parking a vehicle with a modulating control valve, move the lever as far as it will go and hold it in place with the locking device. Dual Parking Control Valves. When main air pressure is lost, the spring brakes come on. Some vehicles, such as buses, have a separate air tank which can be used to release the spring brakes. This is so you can move the vehicle in an emergency. One of the valves is a push-pull type and is used to put on the spring brakes for parking. The other valve is spring loaded in the "out" position. When you push the control in, air from the separate air tank releases the spring brakes so you can move. When you release the button, the spring brakes come on again. There is only enough air in the separate tank to do this a few times. Therefore, plan carefully when moving. Otherwise, you may be stopped in a dangerous location when the separate air supply runs out. See Figure 5.3. #### 5.1.16 - Antilock Braking Systems (ABS) Truck tractors with air brakes built on or after March 1, 1997, and other air brakes vehicles, (trucks, buses, trailers, and converter dollies) built on or after March 1, 1998, are required to be equipped with antilock brakes. Many commercial vehicles built before these dates have been voluntarily equipped with ABS. Check the certification label for the date of manufacture to determine if your vehicle is equipped with ABS. ABS is a computerized system that keeps your wheels from locking up during hard brake applications. Vehicles with ABS have yellow malfunction lamps to tell you if something isn't working. tractors, trucks, and buses will have yellow ABS malfunction lamps on the instrument panel. Trailers will have yellow ABS malfunction lamps on the left side, either on the front or rear corner. Dollies manufactured on or after March 1, 1998 are required to have a lamp on the left side. ## TRACTOR PROTECTION VALVE & EMERGENCY TRAILER BRAKE OPERATION #### Tractor protection valve - Provides air supply - Closes automatically if air supply drops when driving The parking brakes, when applied, close the tractor protection valve and set the spring brakes at the same time. Figure 5.3 On newer vehicles, the malfunction lamp comes on at start-up for a bulb check, and then goes out quickly. On older systems, the lamp could stay on until you are driving over five mph. If the lamp stays on after the bulb check, or goes on once you are under way, you may have lost ABS control at one or more wheels. In the case of towed units manufactured before it was required by the Department of Transportation, it may be difficult to tell if the unit is equipped with ABS. Look under the vehicle for the electronic control unit (ECU) and wheel speed sensor wires coming from the back of the brakes. ABS is an addition to your normal brakes. It does not decrease or increase your normal braking capability. ABS only activates when wheels are about to lock up. ABS does not necessarily shorten your stopping distance, but it does help you keep the vehicle under control during hard braking Figure 5.4 ### Subsection 5.1 Test Your Knowledge - 1. Why must air tanks be drained? - 2. What is a supply pressure gauge used for? - All vehicles with air brakes must have a low air pressure warning signal. True or False? - 4. What are spring brakes? - 5. Front wheel brakes are good under all conditions. True or False? - 6. How do you know if your vehicle is equipped with antilock brakes? These questions may be on your test. If you can't answer them all, re-read subsection 5.1. #### 5.2 - Dual Air Brake Most heavy-duty vehicles use dual air brake systems for safety. A dual air brake system has two separate air brake systems, which use a single set of brake controls. Each system has its own air tanks, hoses, lines, etc. One system typically operates the regular brakes on the rear axle or axles. The other system operates the regular brakes on the front axle (and possibly one rear axle). Both systems supply air to the trailer (if there is one). The first system is called the "primary" system. The other is called the "secondary" system. See Figure 5.4. Before driving a vehicle with a dual air system, allow time for the air compressor to build up a minimum of 100 psi pressure in both the primary and secondary systems. Watch the primary and secondary air pressure gauges (or needles, if the system has two needles in one gauge). Pay attention to the low air pressure warning light and buzzer. The warning light and buzzer should shut off when air pressure in both systems rises to a value set by the manufacturer. This value must be greater than 60 psi. The warning light and buzzer should come on before the air pressure drops below 60 psi in either system. If this happens while driving, you should stop right away and safely park the vehicle. If one air system is very low on pressure, either the front or the rear brakes will not be operating fully. This means it will take you longer to stop. Bring the vehicle to a safe stop, and have the air brakes system fixed. #### 5.3 - Inspecting Air Brake Systems You should use the basic seven-step inspection procedure described in Section 2 to inspect your vehicle. There are more things to inspect on a vehicle with air brakes than one without them. These things are discussed below, in the order they fit into the seven-step method. ### 5.3.1 – During Step 2 Engine Compartment Checks Check Air Compressor Drive Belt (if compressor is belt-driven). If the air compressor is belt-driven, check the condition and tightness of the belt. It should be in good condition. ### 5.3.2 – During Step 5 Walkaround Inspection Check Slack Adjusters on S-cam Brakes. Park on level ground and chock the wheels to prevent the vehicle from moving. Release the parking brakes so you can move the slack adjusters. Use gloves and pull hard on each slack adjuster that you can reach. If a slack adjuster moves more than about one inch where the push rod attaches to it, it probably needs adjustment. Adjust it or have it adjusted. Vehicles with too much brake slack can be very hard to stop. Out-of-adjustment brakes are the most common problem found in roadside inspections. Be safe. Check the slack adjusters. All vehicles built since 1994 have automatic slack adjustors. Even though automatic slack adjustors adjust themselves during full brake applications, they must be checked. Automatic adjusters should not have to be manually adjusted except when performing maintenance on the brakes and during installation of the slack adjusters. In a vehicle equipped with automatic adjusters, when the pushrod stroke exceeds the legal brake adjustment limit, it is an indication that a mechanical problem exists in the adjuster itself, a problem with the related foundation brake components, or that the adjuster was improperly installed. The manual adjustment of an automatic adjuster to bring a brake pushrod stroke within legal limits is generally masking a mechanical problem and is not fixing it. Further, routine adjustment of most automatic adjusters will likely result in premature wear of the adjuster itself. It is recommended that when brakes equipped with automatic adjusters are found to be out of adjustment, the driver take the vehicle to a repair facility as soon as possible to have the problem corrected. The manual adjustment of automatic slack adjusters is dangerous because it may give the driver a false sense of security regarding the effectiveness of the braking system. The manual adjustment of an automatic adjuster should only be used as a temporary measure to correct the adjustment in an emergency situation as it is likely the brake will soon be back out of adjustment since this procedure usually does not fix the underlying adjustment problem. (Note: Automatic slack adjusters are made by different manufacturers and do not all operate the same. Therefore, the specific manufacturer's Service Manual should be consulted prior to troubleshooting a brake adjustment problem.) Check Brake Drums (or Discs), Linings, and Hoses. Brake drums (or discs) must not have cracks longer than one half the width of the friction area. Linings (friction material) must not be loose or soaked with oil or grease. They must not be dangerously thin. Mechanical parts must be in place, not broken or missing. Check the air hoses connected to the brake chambers to make sure they aren't cut or worn due to rubbing. #### 5.3.3 – Step 7 Final Air Brake Check Do the following checks instead of the hydraulic brake check shown in Section 2, Step 7: Check Brake System. Test Low Pressure Warning Signal. Shut the engine off when you have enough air pressure so that the low pressure warning signal is not on. Turn the electrical power on and step on and off the brake pedal to reduce air tank pressure. The low air pressure warning signal must come on before the pressure drops to less than 60 psi in the air tank (or tank with the lowest air pressure, in dual air systems). See Figure 5.5. If the warning signal doesn't work, you could lose air pressure and you would not know it. This could cause sudden emergency braking in a single-circuit air system. In dual systems the stopping distance will be increased. Only limited braking can be done before the spring brakes come on. Figure 5.5 Check That Spring Brakes Come On Automatically. Continue to fan off the air pressure by stepping on and off the brake pedal to reduce tank pressure. The tractor protection valve and parking brake valve should close (pop out) on a tractor-trailer combination vehicle and the parking brake valve should close (pop out) on other combination and single vehicle types when the air pressure falls to the manufacturer's specification (20 – 45 psi). This will cause
the spring brakes to come on. Check Rate of Air Pressure Buildup. When the engine is at operating rpms, the pressure should build from 85 to 100 psi within 45 seconds in dual air systems. (If the vehicle has larger than minimum air tanks, the buildup time can be longer and still be safe. Check the manufacturer's specifications.) In single air systems (pre-1975), typical requirements are pressure buildup from 50 to 90 psi within 3 minutes with the engine at an idle speed of 600-900 rpms. If air pressure does not build up fast enough, your pressure may drop too low during driving, requiring an emergency stop. Don't drive until you get the problem fixed. Test Air Leakage Rate. With a fully-charged air system (typically 125 psi), turn off the engine, release the parking brake, and time the air pressure drop. The loss rate should be less than two psi in one minute for single vehicles and less than three psi in one minute for combination vehicles. Then apply 90 psi or more with the brake pedal. After the initial pressure drop, if the air pressure falls more than three psi in one minute for single vehicles (more than four psi for combination vehicles), the air loss rate is too much. Check for air leaks and fix before driving the vehicle. Otherwise, you could lose your brakes while driving. Check Air Compressor Governor Cut-in and Cut-out Pressures. Pumping by the compressor should start at about 100 psi and stop at about 125 psi. (Check manufacturer's specifications.) Run the engine at a fast idle. The air governor should cut-out the air compressor at about the manufacturer's specified pressure. The air pressure shown by your gauge(s) will stop rising. With the engine idling, step on and off the brake to reduce the air tank pressure. The compressor should cut-in at about the manufacturer's specified cut-in pressure. The pressure should begin to rise. If the air governor does not work as described above, it may need to be fixed. A governor that does not work properly may not keep enough air pressure for safe driving. **Test Parking Brake.** Stop the vehicle, put the parking brake on, and gently pull against it in a low gear to test that the parking brake will hold. **Test Service Brakes.** Wait for normal air pressure, release the parking brake, move the vehicle forward slowly (about five mph), and apply the brakes firmly using the brake pedal. Note any vehicle "pulling" to one side, unusual feel, or delayed stopping action. This test may show you problems, which you otherwise wouldn't know about until you needed the brakes on the road. ### Subsections 5.2 and 5.3 Test Your Knowledge - 1. What is a dual air brake system? - 2. What are the slack adjusters? - 3. How can you check slack adjusters? - 4. How can you test the low pressure warning signal? - 5. How can you check that the spring brakes come on automatically? - 6. What are the maximum leakage rates? These questions may be on your test. If you can't answer them all, re-read subsections 5.2 and 5.3. #### 5.4 - Using Air Brakes #### 5.4.1 - Normal Stops Push the brake pedal down. Control the pressure so the vehicle comes to a smooth, safe stop. If you have a manual transmission, don't push the clutch in until the engine rpm is down close to idle. When stopped, select a starting gear. #### 5.4.2 – Braking with Antilock Brakes When you brake hard on slippery surfaces in a vehicle without ABS, your wheels may lock up. When your steering wheels lock up, you lose steering control. When your other wheels lock up, you may skid, jackknife, or even spin the vehicle. ABS helps you avoid wheel lock up. The computer senses impending lockup, reduces the braking pressure to a safe level, and you maintain control. You may or may not be able to stop faster with ABS, but you should be able to steer around an obstacle while braking, and avoid skids caused by over braking. Having ABS on only the tractor, only the trailer, or even on only one axle, still gives you more control over the vehicle during braking. Brake normally. When only the tractor has ABS, you should be able to maintain steering control, and there is less chance of jackknifing. But, keep your eye on the trailer and let up on the brakes (if you can safely do so) if it begins to swing out. When only the trailer has ABS, the trailer is less likely to swing out, but if you lose steering control or start a tractor jackknife, let up on the brakes (if you can safely do so) until you gain control. When you drive a tractor-trailer combination with ABS, you should brake as you always have. In other words: Use only the braking force necessary to stop safely and stay in control. Brake the same way, regardless of whether you have ABS on the tractor, the trailer, or both. As you slow down, monitor your tractor and trailer and back off the brakes (if it is safe to do so) to stay in control. There is only one exception to this procedure, if you always drive a straight truck or combination with working ABS on all axles, in an emergency stop, you can fully apply the brakes. Without ABS, you still have normal brake functions. Drive and brake as you always have. Remember, if your ABS malfunctions, you still have regular brakes. Drive normally, but get the system serviced soon. #### 5.4.3 - Emergency Stops If somebody suddenly pulls out in front of you, your natural response is to hit the brakes. This is a good response if there's enough distance to stop, and you use the brakes correctly. You should brake in a way that will keep your vehicle in a straight line and allow you to turn if it becomes necessary. You can use the "controlled braking" method or the "stab braking" method. Controlled Braking. With this method, you apply the brakes as hard as you can without locking the wheels. Keep steering wheel movements very small while doing this. If you need to make a larger steering adjustment or if the wheels lock, release the brakes. Re-apply the brakes as soon as you can. **Stab Braking.** Apply your brakes all the way. Release brakes when wheels lock up. As soon as the wheels start rolling, apply the brakes fully again. (It can take up to one second for the wheels to start rolling after you release the brakes. If you re-apply the brakes before the wheels start rolling, the vehicle won't straighten out.) #### 5.4.4 - Stopping Distance Stopping distance was described in Section 2 under "Speed and Stopping Distance." With air brakes there is an added delay - "Brake Lag". This is the time required for the brakes to work after the brake pedal is pushed. With hydraulic brakes (used on cars and light/medium trucks), the brakes work instantly. However, with air brakes, it takes a little time (one half second or more) for the air to flow through the lines to the brakes. Thus, the total stopping distance for vehicles with air brake systems is made up of four different factors. Perception Distance + Reaction Distance + Brake Lag Distance + Braking Distance = Total Stopping Distance The air brake lag distance at 55 mph on dry pavement adds about 32 feet. So at 55 mph for an average driver under good traction and brake conditions, the total stopping distance is over 450 feet. See Figure 5.6. Figure 5.6 #### 5.4.5 – Brake Fading or Failure Brakes are designed so brake shoes or pads rub against the brake drum or disks to slow the vehicle. Braking creates heat, but brakes are designed to take a lot of heat. However, brakes can fade or fail from excessive heat caused by using them too much and not relying on the engine braking effect. Excessive use of the service brakes results in overheating and leads to brake fade. Brake fade results from excessive heat causing chemical changes in the brake lining, which reduce friction, and also causing expansion of the brake drums. As the overheated drums expand, the brake shoes and linings have to move farther to contact the drums, and the force of this contact is reduced. Continued overuse may increase brake fade until the vehicle cannot be slowed down or stopped. Brake fade is also affected by adjustment. To safely control a vehicle, every brake must do its share of the work. Brakes out of adjustment will stop doing their share before those that are in adjustment. The other brakes can then overheat and fade, and there will not be enough braking available to control the vehicle(s). Brakes can get out of adjustment quickly, especially when they are hot. Therefore, check brake adjustment often. #### 5.4.6 - Proper Braking Technique Remember. The use of brakes on a long and/or steep downgrade is only a supplement to the braking effect of the engine. Once the vehicle is in the proper low gear, the following is the proper braking technique: Apply the brakes just hard enough to feel a definite slowdown. When your speed has been reduced to approximately five mph below your "safe" speed, release the brakes. (This application should last for about three seconds.) When your speed has increased to your "safe" speed, repeat steps 1 and 2. For example, if your "safe" speed is 40 mph, you would not apply the brakes until your speed reaches 40 mph. You now apply the brakes hard enough to gradually reduce your speed to 35 mph and then release the brakes. Repeat this as often as necessary until you have reached the end of the downgrade. #### 5.4.7 - Low Air Pressure If the low air pressure warning comes on, stop and safely park your vehicle as soon as possible. There might be an air leak in the system. Controlled braking is possible only while enough air remains in the air tanks. The spring brakes will come on when the air pressure drops into the range of 20 to 45 psi. A heavily loaded vehicle will take a long distance to stop because the spring brakes do not work on all axles. Lightly loaded vehicles or vehicles on slippery roads may skid out of control when the spring brakes come on. It is much safer to stop while there is enough air in the tanks to use the foot brakes. #### 5.4.8 - Parking Brakes Any time you park, use the
parking brakes, except as noted below. Pull the parking brake control knob out to apply the parking brakes, push it in to release. The control will be a yellow, diamond-shaped knob labeled "parking brakes" on newer vehicles. On older vehicles, it may be a round blue knob or some other shape (including a lever that swings from side to side or up and down). Don't use the parking brakes if the brakes are very hot (from just having come down a steep grade), or if the brakes are very wet in freezing temperatures. If they are used while they are very hot, they can be damaged by the heat. If they are used in freezing temperatures when the brakes are very wet, they can freeze so the vehicle cannot move. Use wheel chocks on a level surface to hold the vehicle. Let hot brakes cool before using the parking brakes. If the brakes are wet, use the brakes lightly while driving in a low gear to heat and dry them. If your vehicle does not have automatic air tank drains, drain your air tanks at the end of each working day to remove moisture and oil. Otherwise, the brakes could fail. Never leave your vehicle unattended without applying the parking brakes or chocking the wheels. Your vehicle might roll away and cause injury and damage. ### Subsection 5.4 Test Your Knowledge - 1. Why should you be in the proper gear before starting down a hill? - What factors can cause brakes to fade or fail? - 3. The use of brakes on a long, steep downgrade is only a supplement to the braking effect of the engine. True or False? - 4. If you are away from your vehicle only a short time, you do not need to use the parking brake. True or False? - 5. How often should you drain air tanks? - 6. How do you brake when you drive a tractor-trailer combination with ABS? - 7. You still have normal brake functions if your ABS is not working. True or False? These questions may be on your test. If you can't answer them all, re-read subsection 5.4. ## Section 10 SCHOOL BUSES #### **This Section Covers** - Danger Zones and Use of Mirrors - Loading and Unloading - Emergency Exit and Evacuation - Railroad-highway Grade Crossings - Student Management - Antilock Braking Systems - Special Safety Considerations Because state and local laws and regulations regulate so much of school transportation and school bus operations, many of the procedures in this section may differ from state to state. You should be thoroughly familiar with the laws and regulations in your state and local school district. #### 10.1 – Danger Zones and Use of Mirrors #### 10.1.1 - Danger Zones The danger zone is the area on all sides of the bus where children are in the most danger of being hit, either by another vehicle or their own bus. The danger zones may extend as much as 30 feet from the front bumper with the first 10 feet being the most dangerous, 10 feet from the left and right sides of the bus and 10 feet behind the rear bumper of the school bus. In addition, the area to the left of the bus is always considered dangerous because of passing cars. Figure 10.1 illustrates these danger zones. #### 10.1.2 - Correct Mirror Adjustment Proper adjustment and use of all mirrors is vital to the safe operation of the school bus in order to observe the danger zone around the bus and look for students, traffic, and other objects in this area. You should always check each mirror before operating the school bus to obtain maximum viewing area. If necessary, have the mirrors adjusted. Figure 10.1 ## 10.1.3 – Outside Left and Right Side Flat Mirrors These mirrors are mounted at the left and right front corners of the bus at the side or front of the windshield. They are used to monitor traffic, check clearances and students on the sides and to the rear of the bus. There is a blind spot immediately below and in front of each mirror and directly in back of the rear bumper. The blind spot behind the bus extends 50 to 150 feet and could extend up to 400 feet depending on the length and width of the bus Ensure that the mirrors are properly adjusted so you can see: 200 feet or 4 bus lengths behind the bus. Along the sides of the bus. The rear tires touching the ground. Figure 10.2 shows how both the outside left and right side flat mirrors should be adjusted. Figure 10.2 ## 10.1.4 – Outside Left and Right Side Convex Mirrors The convex mirrors are located below the outside flat mirrors. They are used to monitor the left and right sides at a wide angle. They provide a view of traffic, clearances, and students at the side of the bus. These mirrors present a view of people and objects that does not accurately reflect their size and distance from the bus. You should position these mirrors to see: The entire side of the bus up to the mirror mounts. Front of the rear tires touching the ground. At least one traffic lane on either side of the bus. Figure 10.3 shows how both the outside left and right side convex mirrors should be adjusted. ## 10.1.5 – Outside Left and Right Side Crossover Mirrors These mirrors are mounted on both left and right front corners of the bus. They are used to see the front bumper "danger zone" area directly in front of the bus that is not visible by direct vision, and to view the "danger zone" area to the left side and Figure 10.3 right side of the bus, including the service door and front wheel area. The mirror presents a view of people and objects that does not accurately reflect their size and distance from the bus. The driver must ensure that these mirrors are properly adjusted. Ensure that the mirrors are properly adjusted so you can see: The entire area in front of the bus from the front bumper at ground level to a point where direct vision is possible. Direct vision and mirror view vision should overlap. The right and left front tires touching the ground. The area from the front of the bus to the service door. These mirrors, along with the convex and flat mirrors, should be viewed in a logical sequence to ensure that a child or object is not in any of the danger zones. Figure 10.4 illustrates how the left and right side crossover mirrors should be adjusted. Figure 10.4 #### 10.1.6 - Overhead Inside Rearview Mirror This mirror is mounted directly above the windshield on the driver's side area of the bus. This mirror is used to monitor passenger activity inside the bus. It may provide limited visibility directly in back of the bus if the bus is equipped with a glass-bottomed rear emergency door. There is a blind spot area directly behind the driver's seat as well as a large blind spot area that begins at the rear bumper and could extend up to 400 feet or more behind the bus. You must use the exterior side mirrors to monitor traffic that approaches and enters this area. You should position the mirror to see: The top of the rear window in the top of the mirror. All of the students, including the heads of the students right behind you. #### 10.2 – Loading and Unloading More students are killed while getting on or off a school bus each year than are killed as passengers inside of a school bus. As a result, knowing what to do before, during, and after loading or unloading students is critical. This section will give you specific procedures to help you avoid unsafe conditions which could result in injuries and fatalities during and after loading and unloading students. You will be required to demonstrate the procedures of off-loading passengers during the road test. The information in this section is intended to provide a broad overview, but is not a definitive set of actions. It is imperative that you learn and obey the state laws and regulations governing loading/unloading operations in your state. #### 10.2.1 – Approaching the Stop Each school district establishes official routes and official school bus stops. All stops should be approved by the school district prior to making the stop. You should never change the location of a bus stop without written approval from the appropriate school district official. You must use extreme caution when approaching a school bus stop. You are in a very demanding situation when entering these areas. It is critical that you understand and follow all state and local laws and regulations regarding approaching a school bus stop. This would involve the proper use of mirrors, alternating flashing lights, and when equipped, the moveable stop signal arm and crossing control arm. #### When approaching the stop, you should: Approach cautiously at a slow rate of speed. Look for pedestrians, traffic, or other objects before, during, and after coming to a stop. Continuously check all mirrors. If the school bus is so equipped, activate alternating flashing amber warning lights at least 100 feet but no more that 500 feet or approximately 5-10 seconds before the school bus stop or in accordance with state law. Turn on right turn signal indicator about 100-300 feet or approximately 3-5 seconds before pulling over. Continuously check mirrors to monitor the danger zones for students, traffic, and other objects. Move as far as possible to the right on the traveled portion of the roadway. When **stopping** you should: Bring school bus to a full stop with the front bumper at least 10 feet away from students at the designated stop. This forces the students to walk to the bus so you have a better view of their movements. Place transmission in Park, or if there is no Park shift point, in Neutral and set the parking brake at each stop. Activate alternating red lights when traffic is a safe distance from the school bus and ensure stop arm is extended.. Make a final check to see that all traffic has stopped before completely opening the door and signaling students to approach. #### 10.2.2 - Loading Procedures Perform a safe stop as described in subsection 10.2.1. Students should wait in a designated location for the school bus, facing the bus as it approaches. Students should board the bus only when signaled by the driver. Monitor all mirrors continuously. Count the number of
students at the bus stop and be sure all board the bus. If possible, know names of students at each stop. If there is a student missing, ask the other students where the student is. Have the students board the school bus slowly, in single file, and use the handrail. The dome light should be on while loading in the dark. Wait until students are seated and facing forward before moving the bus. Check all mirrors. Make certain no one is running to catch the bus. If you cannot account for a student outside, secure the bus, take the key, and check around and underneath the bus. When all students are accounted for, prepare to leave by: - Closing the door. - Engaging the transmission. - Releasing the parking brake. - Turning off alternating flashing red lights. - Turning on left turn signal. - Checking all mirrors again. - Allowing congested traffic to disperse. When it is safe, move the bus to enter traffic flow and continue the route. The loading procedure is essentially the same wherever you load students, but there are slight differences. When students are loading at the school campus, you should: Turn off the ignition switch. Remove key if leaving driver's compartment. Position yourself to supervise loading as required or recommended by your state or local regulations. ## 10.2.3 – Unloading Procedures on the Route Perform a safe stop at designated unloading areas as described in subsection 10.2.1. Have the students remain seated until told to exit. Check all mirrors. Count the number of students while unloading to confirm the location of all students before pulling away from the stop. Tell students to exit the bus and walk at least 10 feet away from the side of the bus to a position where the driver can plainly see all students. Check all mirrors again. Make sure no students are around or returning to the bus. If you cannot account for a student outside the bus, secure the bus, and check around and underneath the bus. When all students are accounted for, prepare to leave by: - Closing the door. - Engaging transmission. - Releasing parking brake. - Turning off alternating flashing red lights. - Turning on left turn signal. - Checking all mirrors again. - Allowing congested traffic to disperse. When it is safe, move the bus, enter the traffic flow and continue the route. Note. If you have missed a student's unloading stop, do not back up. Be sure to follow local procedures. Additional Procedures for Students That Must Cross the Roadway. You should understand what students should do when exiting a school bus and crossing the street in front of the bus. In addition, the school bus driver should understand that students might not always do what they are supposed to do. If a student or students must cross the roadway, they should follow these procedures: Walk approximately 10 feet away from the side of the school bus to a position where you can see them. Walk to a location at least 10 feet in front of the right corner of the bumper, but still remaining away from the front of the school bus. Stop at the right edge of the roadway. You should be able to see the student's feet. When students reach the edge of the roadway, they should: Stop and look in all directions, making sure the roadway is clear and is safe. Check to see if the red flashing lights on the bus are still flashing. Wait for your signal before crossing the roadway. Upon your signal, the students should: Cross far enough in front of the school bus to be in your view. Stop at the left edge of the school bus, stop, and look again for your signal to continue to cross the roadway. Look for traffic in both directions, making sure roadway is clear. Proceed across the roadway, continuing to look in all directions. Note: The school bus driver should enforce any state or local regulations or recommendations concerning student actions outside the school bus. #### 10.2.4 – Unloading Procedures at School State and local laws and regulations regarding unloading students at schools, particularly in situations where such activities take place in the school parking lot or other location that is off the traveled roadway, are often different than unloading along the school bus route. It is important that the school bus driver understands and obeys state and local laws and regulations. The following procedures are meant to be general guidelines. When unloading at the school you should follow these procedures: Perform a safe stop at designated unloading areas as described in subsection 10.2.1. Secure the bus by: - Turning off the ignition switch. - Removing key if leaving driver's compartment. Have the students remain seated until told to exit. Position yourself to supervise unloading as required or recommended by your state or local regulations. Have students exit in orderly fashion. Observe students as they step from bus to see that all move promptly away from the unloading area. Walk through the bus and check for hiding/sleeping students and items left by students. Check all mirrors. Make certain no students are returning to the bus. If you cannot account for a student outside the bus and the bus is secure, check around and underneath the bus. When all students are accounted for, prepare to leave by: - Closing the door. - Fastening safety belt. - Starting engine. - Engaging the transmission. - Releasing the parking brake. - Turning off alternating flashing red lights. - Turning on left turn signal. - Checking all mirrors again. - Allowing congested traffic to disperse. When it is safe, pull away from the unloading area. ## 10.2.5 – Special Dangers of Loading and Unloading **Dropped or Forgotten Objects.** Always focus on students as they approach the bus and watch for any who disappear from sight. Students may drop an object near the bus during loading and unloading. Stopping to pick up the object, or returning to pick up the object may cause the student to disappear from the driver's sight at a very dangerous moment. Students should be told to leave any dropped object and move to a point of safety out of the danger zones and attempt to get the driver's attention to retrieve the object. **Handrail Hang-ups.** Students have been injured or killed when clothing, accessories, or even parts of their body get caught in the handrail or door as they exited the bus. You should closely observe all students exiting the bus to confirm that they are in a safe location prior to moving the bus. #### 10.2.6 - Post-trip Inspection When your route or school activity trip is finished, you should conduct a post-trip inspection of the bus. You should walk through the bus and around the bus looking for the following: Articles left on the bus. Sleeping students. Open windows and doors. Mechanical/operational problems with the bus, with special attention to items that are unique to school buses – mirror systems, flashing warning lamps and stop signal arms. Damage or vandalism. Any problems or special situations should be reported immediately to your supervisor or school authorities. #### 10.3 - Emergency Exit and Evacuation An emergency situation can happen to anyone, anytime, anywhere. It could be a crash, a stalled school bus on a railroad-highway crossing or in a high-speed intersection, an electrical fire in the engine compartment, a medical emergency to a student on the school bus, etc. Knowing what to do in an emergency–before, during and after an evacuation–can mean the difference between life and death. #### 10.3.1 - Planning for Emergencies **Determine Need to Evacuate Bus.** The first and most important consideration is for you to recognize the hazard. If time permits, school bus drivers should contact their dispatcher to explain the situation before making a decision to evacuate the school bus. As a general rule, student safety and control is best maintained by keeping students on the bus during an emergency and/or impending crisis situation, if so doing does not expose them to unnecessary risk or injury. Remember, the decision to evacuate the bus must be a timely one. A decision to evacuate should include consideration of the following conditions: Is there a fire or danger of fire? Is there a smell of raw or leaking fuel? Is there a chance the bus could be hit by other vehicles? Is the bus in the path of a sighted tornado or rising waters? Are there downed power lines? Would removing students expose them to speeding traffic, severe weather, or a dangerous environment such as downed power lines? Would moving students complicate injuries such as neck and back injuries and fractures? Is there a hazardous spill involved? Sometimes, it may be safer to remain on the bus and not come in contact with the material. **Mandatory Evacuations.** The driver must evacuate the bus when: The bus is on fire or there is a threat of a fire. The bus is stalled on or adjacent to a railroadhighway crossing. The position of the bus may change and increase the danger. There is an imminent danger of collision. There is a need to quickly evacuate because of a hazardous materials spill. #### 10.3.2 - Evacuation Procedures Be Prepared and Plan Ahead. When possible, assign two responsible, older student assistants to each emergency exit. Teach them how to assist the other students off the bus. Assign another student assistant to lead the students to a "safe place" after evacuation. However, you must recognize that there may not be older, responsible students on the bus at the time of the emergency. Therefore, emergency evacuation procedures must be explained to all students. This includes knowing how to operate the various emergency exits and the importance of listening to and following all instructions given by you. Some tips to determine a safe place: A safe place will be at least 100 feet off the road in the direction of oncoming traffic. This will keep the students from being hit by debris if another vehicle collides with the bus. Lead students upwind of the bus if fire is present. Lead students as far away
from railroad tracks as possible and in the direction of any oncoming train. Lead students upwind of the bus at least 300 feet if there is a risk from spilled hazardous materials. If the bus is in the direct path of a sighted tornado and evacuation is ordered, escort students to a nearby ditch or culvert if shelter in a building is not readily available, and direct them to lie face down, hands covering their head. They should be far enough away so the bus cannot topple on them. Avoid areas that are subject to flash floods. **General Procedures.** Determine if evacuation is in the best interest of safety. Determine the best type of evacuation: - Front, rear or side door evacuation, or some combination of doors. - Roof or window evacuation. #### Secure the bus by: - Placing transmission in Park, or if there is no shift point, in Neutral. - Setting parking brakes. - Shutting off the engine. - Removing ignition key. - Activating hazard-warning lights. If time allows, notify dispatch office of evacuation location, conditions, and type of assistance needed. Dangle radio microphone or telephone out of driver's window for later use, if operable. If no radio, or radio is inoperable, dispatch a passing motorist or area resident to call for help. As a last resort, dispatch two older, responsible students to go for help. Order the evacuation. Evacuate students from the bus. - Do not move a student you believe may have suffered a neck or spinal injury unless his or her life is in immediate danger. - Special procedures must be used to move neck spinal injury victims to prevent further injury. Direct a student assistant to lead students to the nearest safe place. Walk through the bus to ensure no students remain on the bus. Retrieve emergency equipment. Join waiting students. Account for all students and check for their safety. Protect the scene. Set out emergency warning devices as necessary and appropriate. Prepare information for emergency responders. #### 10.4 - Railroad-highway Crossings #### 10.4.1 - Types of Crossings Passive Crossings. This type of crossing does not have any type of traffic control device. You must stop at these crossings and follow proper procedures. However, the decision to proceed rests entirely in your hands. Passive crossings require you to recognize the crossing, search for any train using the tracks and decide if there is sufficient clear space to cross safely. Passive crossings have yellow circular advance warning signs, pavement markings and crossbucks to assist you in recognizing a crossing. **Active Crossings.** This type of crossing has a traffic control device installed at the crossing to regulate traffic at the crossing. These active devices include flashing red lights, with or without bells and flashing red lights with bells and gates. #### 10.4.2 – Warning Signs and Devices Advance Warning Signs. The round, black-onyellow warning sign is placed ahead of a public railroad-highway crossing. The advance warning sign tells you to slow down, look and listen for the train, and be prepared to stop at the tracks if a train is coming. See Figure 10.5. Figure 10.5 **Pavement Markings.** Pavement markings mean the same as the advance warning sign. They consist of an "X" with the letters ""RR" and a nopassing marking on two-lane roads. There is also a no passing zone sign on two-lane roads. There may be a white stop line painted on the pavement before the railroad tracks. The front of the school bus must remain behind this line while stopped at the crossing. See Figure 10.6. Figure 10.6 **Crossbuck Signs.** This sign marks the crossing. It requires you to yield the right-of-way to the train. If there is no white line painted on the pavement, you must stop the bus before the crossbuck sign. When the road crosses over more than one set of tracks, a sign below the crossbuck indicates the number of tracks. See Figure 10.7. Figure 10.7 Flashing Red Light Signals. At many highwayrail grade crossings, the crossbuck sign has flashing red lights and bells. When the lights begin to flash, stop! A train is approaching. You are required to yield the right-of-way to the train. If there is more than one track, make sure all tracks are clear before crossing. See Figure 10.8. **Gates.** Many railroad-highway crossings have gates with flashing red lights and bells. Stop when the lights begin to flash and before the gate lowers across the road lane. Remain stopped until the gates go up and the lights have stopped flashing. Proceed when it is safe. If the gate stays down after the train passes, do not drive around the gate. Instead, call your dispatcher. See Figure 10.8. #### 10.4.3 - Recommended Procedures Each state has laws and regulations governing how school buses must operate at railroad-highway crossings. It is important for you to understand and obey these state laws and regulations. In general, school buses must stop at all crossings, and ensure it is safe before proceeding across the tracks. The specific procedures required in each state vary. Figure 10.8 A school bus is one of the safest vehicles on the highway. However, a school bus does not have the slightest edge when involved in a crash with a train. Because of a train's size and weight it cannot stop quickly. An emergency escape route does not exist for a train. You can prevent school bus/train crashes by following these recommended procedures. #### Approaching the Crossing: - Slow down, including shifting to a lower gear in a manual transmission bus, and test your brakes. - Activate hazard lights approximately 200 feet before the crossing. Make sure your intentions are known. - Scan your surroundings and check for traffic behind you. - Stay to the right of the roadway if possible. - Choose an escape route in the event of a brake failure or problems behind you. #### At the Crossing: - Stop no closer than 15 feet and no farther than 50 feet from the nearest rail, where you have the best view of the tracks. - Place the transmission in Park, or if there is no Park shift point, in Neutral and - press down on the service brake or set the parking brakes. - Turn off all radios and noisy equipment, and silence the passengers. - Open the service door and driver's window. Look and listen for an approaching train. #### Crossing the Track: - Check the crossing signals again before proceeding. - At a multiple-track crossing, stop only before the first set of tracks. When you are sure no train is approaching on any track, proceed across all of the tracks until you have completely cleared them. - Cross the tracks in a low gear. Do not change gears while crossing. - If the gate comes down after you have started across, drive through it even if it means you will break the gate. #### 10.4.4 - Special Situations **Bus Stalls or Trapped on Tracks.** If your bus stalls or is trapped on the tracks, get everyone out and off the tracks immediately. Move everyone far from the bus at an angle, which is both away from the tracks and toward the train. Police Officer at the Crossing. If a police officer is at the crossing, obey directions. If there is no police officer, and you believe the signal is malfunctioning, call your dispatcher to report the situation and ask for instructions on how to proceed. Obstructed View of Tracks. Plan your route so it provides maximum sight distance at highway-rail grade crossings. Do not attempt to cross the tracks unless you can see far enough down the track to know for certain that no trains are approaching. Passive crossings are those that do not have any type of traffic control device. Be especially careful at "passive" crossings. Even if there are active railroad signals that indicate the tracks are clear, you must look and listen to be sure it is safe to proceed. Containment or Storage Areas. If it won't fit, don't commit! Know the length of your bus and the size of the containment area at highway-rail crossings on the school bus route, as well as any crossing you encounter in the course of a school activity trip. When approaching a crossing with a signal or stop sign on the opposite side, pay attention to the amount of room there. Be certain the bus has enough containment or storage area to completely clear the railroad tracks on the other side if there is a need to stop. As a general rule, add 15 feet to the length of the school bus to determine an acceptable amount of containment or storage area. #### 10.5 - Student Management #### 10.5.1 – Don't Deal with On-bus Problems When Loading and Unloading In order to get students to and from school safely and on time, you need to be able to concentrate on the driving task. Loading and unloading requires all your concentration. Don't take your eyes off what is happening outside the bus. If there is a behavior problem on the bus, wait until the students unloading are safely off the bus and have moved away. If necessary, pull the bus over to handle the problem. #### 10.5.2 - Handling Serious Problems Tips on handling serious problems: Follow your school's procedures for discipline or refusal of rights to ride the bus. Stop the bus. Park in a safe location off the road, perhaps a parking lot or a driveway. Secure the bus. Take the ignition key with you if you leave your seat. Stand up and speak respectfully to the offender or offenders. Speak in a courteous manner with a firm voice. Remind the offender of the expected behavior. Do not show anger, but do show that you mean business. If a change of seating is needed, request that the student move to a seat near you. Never put a student off the bus except at school or at his or her designated school bus stop. If you feel that the offense is serious enough that you cannot safely drive the bus, call for a school administrator or the police to come and remove the student. Always follow your state or local procedures for requesting assistance. #### 10.6 - Antilock Braking Systems ## 10.6.1 – Vehicles Required to Have Antilock Braking Systems The
Department of Transportation requires that antilock braking systems be on: Air brakes vehicles, (trucks, buses, trailers and converter dollies) built on or after March 1, 1998. Hydraulically braked trucks and buses with a gross vehicle weight rating of 10,000 lbs or more built on or after March 1, 1999. Many buses built before these dates have been voluntarily equipped with ABS. Your school bus will have a yellow ABS malfunction lamp on the instrument panel if it is equipped with ABS. #### 10.6.2 - How ABS Helps You When you brake hard on slippery surfaces in a vehicle without ABS, your wheels may lock up. When your steering wheels lock up, you lose steering control. When your other wheels lock up, you may skid or even spin the vehicle. ABS helps you avoid wheel lock up and maintain control. You may or may not be able to stop faster with ABS, but you should be able to steer around an obstacle while braking, and avoid skids caused by over braking. #### 10.6.3 - Braking with ABS When you drive a vehicle with ABS, you should brake as you always have. In other words: Use only the braking force necessary to stop safely and stay in control. Brake the same way, regardless of whether you have ABS on the bus. However, in emergency braking, do not pump the brakes on a bus with ABS. As you slow down, monitor your bus and back off the brakes (if it is safe to do so) to stay in control. #### 10.6.4 - Braking if ABS is Not Working Without ABS, you still have normal brake functions. Drive and brake as you always have. Vehicles with ABS have yellow malfunction lamps to tell you if something is not working. The yellow ABS malfunction lamp is on the bus's instrument panel. As a system check on newer vehicles, the malfunction lamp comes on at start-up for a bulb check and then goes out quickly. On older systems, the lamp could stay on until you are driving over five mph. If the lamp stays on after the bulb check, or goes on once you are under way, you may have lost ABS control at one or more wheels. Remember, if your ABS malfunctions, you still have regular brakes. Drive normally, but get the system serviced soon. #### 10.6.5 - Safety Reminders ABS won't allow you to drive faster, follow more closely, or drive less carefully. ABS won't prevent power or turning skids—ABS should prevent brake-induced skids but not those caused by spinning the drive wheels or going too fast in a turn. ABS won't necessarily shorten stopping distance. ABS will help maintain vehicle control, but not always shorten stopping distance. ABS won't increase or decrease ultimate stopping power–ABS is an "add-on" to your normal brakes, not a replacement for them. ABS won't change the way you normally brake. Under normal brake conditions, your vehicle will stop as it always stopped. ABS only comes into play when a wheel would normally have locked up because of over braking. ABS won't compensate for bad brakes or poor brake maintenance. Remember: The best vehicle safety feature is still a safe driver. Remember: Drive so you never need to use your ABS. Remember: If you need it, ABS could help to prevent a serious crash. #### 10.7 - Special Safety Considerations #### 10.7.1 - Strobe Lights Some school buses are equipped with roof-mounted, white strobe lights. If your bus is so equipped, the overhead strobe light should be used when you have limited visibility. This means that you cannot easily see around you – in front, behind, or beside the school bus. Your visibility could be only slightly limited or it could be so bad that you can see nothing at all. In all instances, understand and obey your state or local regulations concerning the use of these lights. #### 10.7.2 - Driving in High Winds Strong winds affect the handling of the school bus! The side of a school bus acts like a sail on a sailboat. Strong winds can push the school bus sideways. They can even move the school bus off the road or, in extreme conditions, tip it over. If you are caught in strong winds: Keep a strong grip on the steering wheel. Try to anticipate gusts. You should slow down to lessen the effect of the wind, or pull off the roadway and wait. Contact your dispatcher to get more information on how to proceed. #### 10.7.3 - Backing Backing a school bus is strongly discouraged. You should back your bus only when you have no other safe way to move the vehicle. You should never back a school bus when students are outside of the bus. Backing is dangerous and increases your risk of a collision. If you have no choice and you must back your bus, follow these procedures: Post a lookout. The purpose of the lookout is to warn you about obstacles, approaching persons, and other vehicles. The lookout should not give directions on how to back the bus. Signal for quiet on the bus. Constantly check all mirrors and rear windows. Back slowly and smoothly. If no lookout is available: - Set the parking brake. - Turn off the motor and take the keys with vou. - Walk to the rear of the bus to determine whether the way is clear. If you must back-up at a student pick-up point, be sure to pick up students before backing and watch for late comers at all times. Be sure that all students are in the bus before backing. If you must back-up at a student drop-off point, be sure to unload students after backing. #### 10.7.4 - Tail Swing A school bus can have up to a three-foot tail swing. You need to check your mirrors before and during any turning movements to monitor the tail swing. ## Section 10 Test Your Knowledge - 1. Define the danger zone. How far does the danger zone extend around the bus? - What should you be able to see if the outside flat mirrors are adjusted properly? The outside convex mirrors? The crossover mirrors? - 3. You are loading students along the route. When should you activate your alternating flashing amber warning lights? - 4. You are unloading students along your route. Where should students walk to after exiting the bus? - 5. After unloading at school, why should you walk through the bus? - 6. What position should students be in front of the bus before they cross the roadway? - 7. Under what conditions must you evacuate the bus? - 8. How far from the nearest rail should you stop at a highway-rail crossing? - 9. What is a passive highway-rail crossing? Why should you be extra cautious at this type of crossing? - 10. How should you use your brakes if your vehicle is equipped with antilock brakes (ABS)? These questions may be on your test. If you can't answer them all, re-read Section 10. # Section 11 Pre-trip Vehicle Inspection Test #### This Section Covers - Internal Inspection - External Inspection During the pre-trip inspection, you must show that the vehicle is safe to drive. You may have to walk around the vehicle and point to or touch each item and explain to the examiner what you are checking and why. Most of the items listed are standard on most vehicles. #### 11.1 All Vehicles Study the following vehicle parts for the type of vehicle you will be using during the CDL skills tests. You should be able to identify each part and tell the examiner what you are looking for or inspecting. #### 11.1.1 Engine Compartment (Engine Off) #### Leaks/Hoses Look for puddles on the ground. Look for dripping fluids on underside of engine and transmission. Inspect hoses for condition and leaks. #### Oil Level Indicate where dipstick is located. See that oil level is within safe operating range. Level must be above refill mark. #### **Coolant Level** Inspect reservoir sight glass (adequate level will show in sight glass), or (If engine is not hot), remove radiator cap and check for visible coolant level. #### **Power Steering Fluid** Indicate where power steering fluid dipstick is located. Check for adequate power steering fluid level. Level must be above refill mark. #### **Engine Compartment Belts** Check the following belts for snugness (up to 3/4 inch play at center of belt), cracks, or frays: - Power steering belt. - Water pump belt. - Alternator belt. - Air compressor belt. Note: If any of the components listed above are not belt driven, you must: Tell the examiner which component(s) are not belt driven. Make sure component(s) are operating properly, are not damaged or leaking, and are mounted securely. Alternator wires must be securely fastened. #### 11.1.2 - Cab Check/Engine Start #### Safe Start Depress clutch. Place gearshift lever in neutral (or park, for automatic transmissions). Start engine, then release clutch slowly. #### Oil Pressure Gauge Make sure oil pressure gauge is working. Check that pressure gauge shows increasing or normal oil pressure or that the warning light goes off. If equipped, oil temperature gauge should begin a gradual rise to the normal operating range. #### **Temperature Gauge** Make sure the temperature gauge is working. Temperature should begin to climb to the normal operating range or temperature light should be off. #### Air Gauge Make sure the air gauge is working properly. Build air pressure to governor cut-out, roughly 120-140 psi. #### Ammeter/Voltmeter Check that gauges show alternator and/or generator is charging or that warning light is off. #### Mirrors and Windshield Mirrors should be clean and adjusted properly from the inside. Windshield should be clean with no illegal stickers, no obstructions, or damage to the glass. #### **Emergency Equipment** Check for spare electrical fuses. Check for three red reflective triangles, 6 fusees or 3 liquid burning flares. Check for a properly charged, secured and rated fire extinguisher. Note: If the vehicle is not equipped with electrical fuses, you must mention this to the examiner. #### **Steering Play** Non-power steering: Check for excessive play by turning steering wheel back and forth. Play should not exceed 10 degrees (or about two inches on a 20-inch wheel). Power steering: With the engine running, check for excessive play by turning the steering wheel back and forth. Play should not exceed 10 degrees (or
about two inches on a 20-inch wheel) before front left wheel barely moves. #### Wipers/Washers Check that wiper arms and blades are secure, not damaged, and operate smoothly. If equipped, windshield washers must operate correctly. #### Lights/Reflectors/Reflector Tape Condition Test that dash indicators work when corresponding lights are turned on: - Left turn signal. - Right turn signal. - Four-way emergency flashers. - High beam headlight. - Anti-lock Braking System (ABS) indicator. Check that all external lights and reflective equipment are clean, not missing or broken, and functional. Light and reflector checks include: - Clearance lights (red on rear, amber elsewhere). - Headlights (high and low beams). - Taillights. - Backing lights. - Turn signals. - Four-way flashers. - Brake lights. - Red reflectors (on rear) and amber reflectors (elsewhere). - Reflector tape condition Note: Checks of brake, turn signal and four-way flasher functions must be done separately. #### Horn Check that air horn and/or electric horn work. #### Heater/Defroster Test that the heater and defroster work. #### **Parking Brake Check** With the parking brake engaged (trailer brakes released on combination vehicles), check that the parking brake will hold vehicle by gently trying to pull forward with parking brake on. With the parking brake released and the trailer parking brake engaged (combination vehicles only), check that the trailer parking brake will hold vehicle by gently trying to pull forward with the trailer parking brake on. #### **Hydraulic Brake Check** Pump the brake pedal three times, then hold it down for five seconds. The brake pedal should not move (depress) during the five seconds. If equipped with a hydraulic brake reserve (backup) system, with the key off, depress the brake pedal and listen for the sound of the reserve system electric motor. Check that the warning buzzer or light is off. ### Air Brake Check (Air Brake Equipped Vehicles Only) Failure to perform all three components of the air brake check correctly will result in an automatic failure of the vehicle inspection test. Air brake safety devices vary. However, this procedure is designed to see that any safety device operates correctly as air pressure drops from normal to a low air condition. For safety purposes, in areas where an incline is present, you will use wheel chocks during the air brake check. The proper procedures for inspecting the air brake system are as follows: Shut off the engine, turn the key to the on position, chock your wheels, if necessary, release the tractor protection valve and parking brake (push in), fully apply the foot brake and hold it for one minute. Check the air gauge to see if the air pressure drops more than three pounds in one minute (single vehicle) or four pounds in one minute (combination vehicle). - Begin fanning off the air pressure by rapidly applying and releasing the foot brake. Low air warning devices (buzzer, light, flag) should activate before air pressure drops below 60 psi. - Continue to fan off the air pressure. At approximately 40 psi on a tractor-trailer combination vehicle, the tractor protection valve and parking brake valve should close (pop out). On other combination vehicle types and single vehicle types, the parking brake valve should close (pop out). #### Service Brake Check You will be required to check the application of air or hydraulic service brakes. This procedure is designed to determine that the brakes are working correctly and that the vehicle does not pull to one side or the other. Pull forward at 5 mph, apply the service brake and stop. Check to see that the vehicle does not pull to either side and that it stops when brake is applied. #### **Safety Belt** Check that the safety belt is securely mounted, adjusts, latches properly and is not ripped or fraved. ## 11.2 – External Inspection (All Vehicles) #### 11.2.1- Steering #### **Steering Box/Hoses** Check that the steering box is securely mounted and not leaking. Look for any missing nuts, bolts, and cotter keys. Check for power steering fluid leaks or damage to power steering hoses. #### Steering Linkage See that connecting links, arms, and rods from the steering box to the wheel are not worn or cracked. Check that joints and sockets are not worn or loose and that there are no missing nuts, bolts, or cotter keys. #### 11.2.2 - Suspension #### Springs/Air/Torque Look for missing, shifted, cracked, or broken leaf springs. Look for broken or distorted coil springs. If vehicle is equipped with torsion bars, torque arms, or other types of suspension components, check that they are not damaged and are mounted securely. Air ride suspension should be checked for damage and leaks. #### **Mounts** Look for cracked or broken spring hangers, missing or damaged bushings, and broken, loose, or missing bolts, u-bolts or other axle mounting parts. (The mounts should be checked at each point where they are secured to the vehicle frame and axle[s]). #### **Shock Absorbers** See that shock absorbers are secure and that there are no leaks. Note: Be prepared to perform the same suspension components inspection on every axle (power unit and trailer, if equipped). #### 11.2.3 - Brakes #### Slack Adjustors and Pushrods Look for broken, loose, or missing parts. For manual slack adjustors, the brake pushrod should not move more than one inch (with the brakes released) when pulled by hand. #### **Brake Chambers** See that brake chambers are not leaking, cracked, or dented and are mounted securely. #### **Brake Hoses/Lines** Look for cracked, worn, or leaking hoses, lines, and couplings. Checks that hoses or lines can supply air or hydraulic fluid to brakes. #### **Drum Brake** Check for cracks, dents, or holes. Also check for loose or missing bolts. Check for contaminates such debris or oil/grease. Brake linings (where visible) should not be worn dangerously thin. #### **Brake Linings** On some brake drums, there are openings where the brake linings can be seen from outside the drum. For this type of drum, check that a visible amount of brake lining is showing. Note: Be prepared to perform the same brake components inspection on every axle (power unit and trailer, if equipped). Note: Rotors and Disks would be checked the same way. #### 11.2.4 - Wheels #### Rims Check for damaged or bent rims. Rims cannot have welding repairs. Check for rust trails that may indicate rim is loose on wheel. #### **Tires** The following items must be inspected on every tire: - Tread depth: Check for minimum tread depth (4/32 on steering axle tires, 2/32 on all other tires). - Tire condition: Check that tread is evenly worn and look for cuts or other damage to tread or sidewalls. Also, make sure that valve caps and stems are not missing, broken, or damaged. - Tire inflation: Check for proper inflation by using a tire gauge. Note: You will not get credit if you simply kick the tires to check for proper inflation. #### **Hub Oil Seals/Axle Seals** See that hub oil/grease seals and axle seals are not leaking and, if wheel has a sight glass, oil level is adequate. #### **Lug Nuts** Check that all lug nuts are present, free of cracks and distortions, and show no signs of looseness such as rust trails or shiny threads. Make sure all bolt holes are not cracked or distorted. #### **Spacers or Budd Spacing** If equipped, check that spacers are not bent, damaged, or rusted through. Spacers should be evenly centered, with the dual wheels and tires evenly separated. Note: Be prepared to perform the same wheel inspection on every axle (power unit and trailer, if equipped). Note: If your vehicle has budd rims, you should check for no gap or damage between rims, tires evenly spaced and no debris in between tires or rims. #### 11.2.5 - Side of Vehicle #### Door(s)/Mirror(s) Check that door(s) are not damaged and that they open and close properly from the outside. Hinges should be secure with seals intact. Check that mirror(s) and mirror brackets are not damaged and are mounted securely with no loose fittings. #### **Fuel Tank** Check that tank(s) are secure, cap(s) are tight, and that there are no leaks from tank(s) or lines. #### Battery/Box Wherever located, see that battery(s) are secure, connections are tight, and cell caps are present. Battery connections should not show signs of excessive corrosion. Battery box and cover or door must be secure. #### **Drive Shaft** See that drive shaft is not bent, twisted, or cracked. Couplings should be secure and free of foreign objects. #### **Exhaust System** Check system for damage (cracks, holes, or severe dents) and signs of leaks such as rust or carbon soot. System should be connected tightly and mounted securely. #### **Frame** Look for cracks, broken welds, holes or other damage to the longitudinal frame members, cross members, box, and floor. #### 11.2.6 - Rear of Vehicle #### **Splash Guards** If equipped, check that splash guards or mud flaps are not damaged and are mounted securely. #### Doors/Ties/Lifts Check that doors and hinges are not damaged and that they open, close, and latch properly from the outside, if equipped. Ties, straps, chains, and binders must also be secure. If equipped with a cargo lift, look for leaking, damaged or missing parts and explain how it should be checked for correct operation. Lift must be fully retracted and latched securely. #### 11.2.7 - Tractor/Coupling #### Air/Electric Lines Listen for air leaks. Check that air hoses and electrical lines are not cut, chafed, spliced, or worn (steel braid should not show through). Make sure air and electrical lines are not tangled, pinched, or dragging against tractor parts. #### Catwalk and/or Steps Check that the catwalk/step is solid, clear of objects, and securely bolted to tractor frame. #### **Mounting Bolts** Look for loose or missing mounting brackets, clamps, bolts, or nuts. Both the fifth wheel and the slide mounting must be solidly attached. On other types of
coupling systems (i.e., ball hitch, pintle hook, etc.), inspect all coupling components and mounting brackets for missing or broken parts. #### Hitch Release Lever Check to see that the hitch release lever is in place and is secure. #### **Locking Jaws / Lever** Look into fifth wheel gap and check that locking jaws are fully closed around the kingpin. On other types of coupling systems (i.e., ball hitch, pintle hook, etc.), inspect the locking mechanism for missing or broken parts and make sure it is locked securely. If present, safety cables or chains must be secure and free of kinks and excessive slack. #### 5th Wheel Skid Plate Check for proper lubrication and that 5th wheel skid plate is securely mounted to the platform and that all bolts and pins are secure and not missing. #### Platform (Fifth Wheel) Check for cracks or breaks in the platform structure which supports the fifth wheel skid plate. #### Release Arm (Fifth Wheel) If equipped, make sure the release arm is in the engaged position and the safety latch is in place. #### Kingpin/Apron/Gap Check that the kingpin is not bent. Make sure the visible part of the apron is not bent, cracked, or broken. Check that the trailer is laying flat on the fifth wheel skid plate (no gap). #### Locking Pins (Fifth Wheel) If equipped, look for loose or missing pins in the slide mechanism of the sliding fifth wheel. If air powered, check for leaks. Make sure locking pins are fully engaged. Check that the fifth wheel is positioned properly so that the tractor frame will clear the landing gear during turns. #### **Sliding Pintle** Check that the sliding pintle is secured with no loose or missing nuts or bolts and cotter pin is in place. #### **Pintle Hook** Check the pintle hook for cracks or breaks and excessive wear. #### **Tongue or Draw-bar** Check that the tongue/draw-bar is not bent or twisted and checks for broken welds and stress cracks. Check that the tongue/draw-bar is not worn excessively. #### **Tongue Storage Area** Check that the storage area is solid and secured to the tongue. Check that cargo in the storage area i.e. chains, binders, etc. are secure. #### 11.3 - School Bus Only #### **Emergency Equipment** In addition to checking for spare electrical fuses (if equipped), three red reflective triangles, and a properly charged, secured, and rated fire extinguisher, school bus drivers must also inspect the following emergency equipment: - Emergency Kit - Body Fluid Cleanup Kit #### **Lighting Indicators** In addition to checking the lighting indicators listed in Section 10.2 of this manual, school bus drivers must also check the following lighting indicators (internal panel lights): - Alternately flashing amber lights indicator, if equipped. - Alternately flashing red lights indicator. - Strobe light indicator, if equipped. #### Lights/Reflectors In addition to checking the lights and reflective devices listed in Section 10.2 of this manual, school bus drivers must also check the following (external) lights and reflectors: - Strobe light, if equipped. - Stop arm light, if equipped. - Alternately flashing amber lights, if equipped. - Alternately flashing red lights. #### **Student Mirrors** In addition to checking the external mirrors, school bus drivers must also check the internal and external mirrors used for observing students: Check for proper adjustment. Checks that all internal and external mirrors and mirror brackets are not damaged and are mounted securely with no loose fittings. Checks that visibility is not impaired due to dirty mirrors. #### Stop Arm / Safety Arm If equipped, check the stop arm to see that it is mounted securely to the frame of the vehicle. Also, check for loose fittings and damage. If equipped, checks that safety arm is securely mounted and functions properly in conjunction with stop arm. #### Passenger Entry/Lift Check that the entry door is not damaged, operates smoothly, and closes securely from the inside. Hand rails are secure and the step light is working, if equipped. The entry steps must be clear with the treads not loose or worn excessively. If equipped with a handicap lift, look for leaking, damaged, or missing parts and explain how lift should be checked for correct operation. Lift must be fully retracted and latched securely. #### **Emergency Exit** Make sure that all emergency exits are not damaged, operate smoothly, and close securely from the inside. Check that any emergency exit warning devices are working. #### Seating Look for broken seat frames and check that seat frames are firmly attached to the floor. Check that seat cushions are attached securely to the seat frames. #### 11.4 - Trailer #### 11.4.1 - Trailer Front #### **Air/Electrical Connections** Check that trailer air connectors are sealed and in good condition. Make sure glad hands are locked in place, free of damage or air leaks. Make sure the trailer electrical plug is firmly seated and locked in place. #### Header Board or Bulkhead If equipped, check the header board or bulkhead to see that it is secure, free of damage, and strong enough to contain cargo. If equipped, the canvas or tarp carrier must be mounted and fastened securely. On enclosed trailers, check the front area for signs of damage such as cracks, bulges, or holes. #### 11.4.2 - Side of Trailer #### **Landing Gear** Check that the landing gear is fully raised, has no missing parts, crank handle is secure, and the support frame and landing pads are not damaged. If power operated, check for air or hydraulic leaks. #### Doors/Ties/Lifts If equipped, check that doors are not damaged. Check that doors open, close, and latch properly from the outside. Check that ties, straps, chains, and binders are secure. If equipped with a cargo lift, look for leaking, damaged or missing parts and explain how it should be checked for correct operation. Lift should be fully retracted and latched securely. #### Frame Look for cracks, broken welds, holes or other damage to the frame, cross members, box, and floor. #### **Tandem Release Arm/Locking Pins** If equipped, make sure the locking pins are locked in place and release arm is secured. #### 11.4.3 - Remainder of Trailer #### Remainder of Trailer Please refer to Section 11.2 of this manual for detailed inspection procedures regarding the following components: - Wheels. - Suspension system. - Brakes. - Doors/ties/lift. - Splash guards. #### 11.5 - Coach/Transit Bus #### 11.5.1 – Passenger Items #### Passenger Entry/Lift Check that entry doors operate smoothly and close securely from the inside. Check that hand rails are secure and, if equipped, that the step light(s) are working. Check that the entry steps are clear, with the treads not loose or worn excessively. If equipped with a handicap lift, look for any leaking, damaged or missing part, and explain how it should be checked for correct operation. Lift should be fully retracted and latched securely. #### **Emergency Exits** Make sure that all emergency exits are not damaged, operate smoothly, and close securely from the inside. Check that any emergency exit warning devices are working. #### **Passenger Seating** Look for broken seat frames and check that seat frames are firmly attached to the floor. Check that seat cushions are attached securely to the seat frames. #### 11.5.2 - Entry/ Exit #### Doors/Mirrors Check that entry/exit doors are not damaged and operate smoothly from the outside. Hinges should be secure with seals intact. Make sure that the passenger exit mirrors and all external mirrors and mirror brackets are not damaged and are mounted securely with no loose fittings. #### 11.5.3 – External Inspection of Coach/ Transit Bus #### Level/Air Leaks See that the vehicle is sitting level (front and rear), and if air-equipped, check for audible air leaks from the suspension system. #### Fuel Tank(s) See that fuel tank(s) are secure with no leaks from tank(s) or lines. #### **Baggage Compartments** Check that baggage and all other exterior compartment doors are not damaged, operate properly, and latch securely. #### Battery/Box Wherever located, see that battery(s) are secure, connections are tight, and cell caps are present. Battery connections should not show signs of excessive corrosion. Check that battery box and cover or door is not damaged and is secure. #### 11.5.4 - Remainder of Coach/ Transit Bus #### Remainder of Vehicle Please refer to Section 11.2 of this manual for detailed inspection procedures for the remainder of the vehicle. Remember, the pre-trip vehicle inspection must be passed before you can proceed to the basic vehicle control skills test. ## 11.6 – Taking the CDL Pre-trip Inspection Test #### 11.6.1 - Class A Pre-trip Inspection Test If you are applying for a Class A CDL, you will be required to perform one of the four versions of a pre-trip inspection in the vehicle you have brought with you for testing. Each of the four tests are equivalent and you will not know which test you will take until just before the testing begins. All of the tests include an engine start, an in-cabinspection, and an inspection of the coupling system. Then, your test may require an inspection of the entire vehicle or only a portion of the vehicle which your CDL Examiner will explain to you. ## 11.6.2 – Class B and C Pre-trip Inspection Test If you are applying for a Class B CDL, you will be required to perform one of the three versions of a pre-trip inspection in the vehicle you have brought with you for testing. Each of the three tests are equivalent and you will not know which test you will take until just before the testing begins. All of the tests include an engine start and an incab inspection. Then, your test may require an inspection of the entire vehicle or only a portion of the vehicle which your CDL Examiner will explain to you. You will also have to inspect any special features of your vehicle (e.g, school or transit bus). #### **CDL Vehicle Inspection Memory Aid** #### **Combination
Vehicles** Straight Truck or Bus Front of Vehicle, Lights/Reflectors, Front of Vehicle, Lights/Reflectors, Engine Compartment & Steering Engine Compartment & Steering Components Components Steering Axle Steering Axle Suspension Suspension Brakes Brakes Tires Tires Engine Start **Engine Start** Driver Door Driver Door **Procedures Procedures** Fuel Area Fuel Area Under Vehicle Under Vehicle · Drive Shaft · Drive Shaft Exhaust Exhaust Frame Frame Drive Axle(s) Suspension Brakes Tires Passenger Items (Buses Only) Coupling Devices Truck Trailer School Bus Items (Schools Bus Only) Rear of Truck/Tractor & Lights/Reflectors Side of Vehicle & Lights/Reflectors Trailer Components · Front, Side, Lights & Reflectors Frame Landing Gear Tandem Release Drive Axle(s) • Suspension Brakes Trailer Axle(s) Tires Suspension Brakes Tires Rear of Vehicle & Lights/Reflectors Rear of Trailer and Lights/Reflectors This page left intentionally blank. # Section 12 Basic Vehicle Control Skills Test #### **This Section Covers** - Skills Test Exercises - Skills Test Scoring Your basic control skills could be tested using one or more of the following exercises off-road or somewhere on the street during the road test: Straight line backing. Offset back/right Offset back/left Parallel park (driver side). Parallel park (conventional). Alley dock. These exercises are shown in Figures 12-1 through 12-6. #### 12.1 SCORING Crossing Boundaries (encroachments) Pull-ups Vehicle Exits **Final Position** <u>Encroachments</u> – The examiner will score the number of times you touch or cross over an exercise boundary line with any portion of your vehicle. Each encroachment will count as an error. <u>Pull-ups</u> – When a driver stops and reverses direction to get a better position, it is scored as a "pull-up". Stopping without changing direction does not count as a pull-up. You will not be penalized for initial pull-ups. However, an excessive number of pull-ups, will count as errors. Outside Vehicle Observations (Looks) – You may be permitted to safely stop and exit the vehicle to check the external position of the vehicle (look). When doing so, you must place the vehicle in neutral and set the parking brake(s). Then, when exiting the vehicle, you must do so safely by facing the vehicle and maintaining three points of contact with the vehicle at all times (when exiting a bus, maintain a firm grasp on the handrail at all times).. If you do not safely secure the vehicle or safely exit the vehicle it may result in an automatic failure of the basic control skills test. The maximum number of times that you may look to check the position of you vehicle is two (2) except for the Straight Line Backing exercise, which allows one look. Each time you open the door, move from a seated position where in physical control of the vehicle or on a bus walk to the back of a bus to get a better view, it is scored as a "look". <u>Final Position</u> – It is important that you finish each exercise exactly as the examiner has instructed you. If you do not maneuver the vehicle into its final position as described by the examiner, you will be penalized and could fail the basic skills test. #### 12.2 EXERCISES #### 12.2.1 - Straight Line Backing You may be asked to back your vehicle in a straight line between two rows of cones without touching or crossing over the exercise boundaries. (See Figure 12.1.) #### 12.2.2 - Offset Back/Right You may be asked to back into a space that is to the right rear of your vehicle. You will drive straight forward and back your vehicle into that space without striking the side or rear boundaries marked by cones. You must place your vehicle completely into the space. (See Figure 12.2) #### 12.2.3 - Offset Back/Left You may be asked to back into a space that is to the left rear of your vehicle. You will drive straight forward and back your vehicle into that space without striking the side or rear boundaries marked by cones. You must place your vehicle completely into the space. (See Figure 12.3) #### 12.2.4 – Parallel Park (Driver Side) You may be asked to park in a parallel parking space that is on your left. You are to drive past the parking space and back into it bringing the rear of your vehicle as close as possible to the rear of the space without crossing side or rear boundaries marked by cones. You are required to get your vehicle completely into the space. (See Figure 12.4) #### 12.2.5 - Parallel Park (Conventional) You may be asked to park in a parallel parking space that is on your right. You are to drive past the parking space and back into it bringing the rear of your vehicle as close as possible to the rear of the space without crossing side or rear boundaries marked by cones. You are required to get your vehicle completely into the space. (See Figure 12.5) #### 12.2.6 - Alley Dock You may be asked to sight-side back your vehicle into an alley, bringing the rear of your vehicle as close as possible to the rear of the alley without going beyond the exercise boundary marked by a line or row of cones. You are required to get your vehicle completely into the space with your entire vehicle straight with the alley. (See Figure 12.6.) Figure 12.1: Straight Line Backing Figure 12.2: Offset Back/Right Figure 12.3: Offset Back/Left Figure 12.4: Parallel Park (Driver Side) Figure 12.5: Parallel Park (Conventional) Figure 12.6: Alley Dock This page intentionally left blank. ## Section 13 On-road Driving #### **This Section Covers** #### How You Will Be Tested You will drive over a test route that has a variety of traffic situations. At all times during the test, you must drive in a safe and responsible manner; and . Wear your safety belt. Obey all traffic signs, signals, and laws. Complete the test without an accident or moving violation. During the driving test, the examiner will be scoring you on specific driving maneuvers as well as on your general driving behavior. You will follow the directions of the examiner. Directions will be given to you so you will have plenty of time to do what the examiner has asked. You will not be asked to drive in an unsafe manner. If your test route does not have certain traffic situations, you may be asked to simulate a traffic situation. You will do this by telling the examiner what you are or would be doing if you were in that traffic situation. #### 13.1 - How You Will Be Tested #### 13.1.1 - Turns You have been asked to make a turn: Check traffic in all directions. Use turn signals and safely get into the lane needed for the turn. As you approach the turn: Use turn signals to warn others of your turn. Slow down smoothly, change gears as needed to keep power, but do not coast unsafely. Unsafe coasting occurs when your vehicle is out of gear (clutch depressed or gearshift in neutral) for more than the length of your vehicle. If you must stop before making the turn: Come to a smooth stop without skidding. Come to a complete stop behind the stop line, crosswalk, or stop sign. If stopping behind another vehicle, stop where you can see the rear tires on the vehicle ahead of you (safe gap). Do not let your vehicle roll. Keep the front wheels aimed straight ahead. When ready to turn: Check traffic in all directions. Keep both hands on the steering wheel during the turn. Keep checking your mirror to make sure the vehicle does not hit anything on the inside of the turn Vehicle should not move into oncoming traffic. Vehicle should finish turn in correct lane. #### After turn: Make sure turn signal is off. Get up to speed of traffic, use turn signal, and move into right-most lane when safe to do so (if not already there). Check mirrors and traffic. #### 13.1.2 - Intersections As you approach an intersection: Check traffic thoroughly in all directions. Decelerate gently. Brake smoothly and, if necessary, change gears. If necessary, come to a complete stop (no coasting) behind any stop signs, signals, sidewalks, or stop lines maintaining a safe gap behind any vehicle in front of you. Your vehicle must not roll forward or backward. When driving through an intersection: Check traffic thoroughly in all directions. Decelerate and yield to any pedestrians and traffic in the intersection. Do not change lanes while proceeding through the intersection. Keep your hands on the wheel. Once through the intersection: Continue checking mirrors and traffic. Accelerate smoothly and change gears as necessary. #### 13.1.3 - Urban/Rural Straight During this part of the test, you are expected to make regular traffic checks and maintain a safe following distance. Your vehicle should be centered in the proper lane (right-most lane) and you should keep up with the flow of traffic but not exceed the posted speed limit. #### 13.1.4 - Lane Changes During multiple lane portions of the test, you will be asked to change lanes to the left, and then back to the right. You should make the necessary traffic checks first, then use proper signals and smoothly change lanes when it is safe to do so. #### 13.1.5 - Expressway Before entering the expressway: Check traffic. Use proper signals. Merge smoothly into the proper lane of traffic. Once on the expressway: Maintain proper lane positioning, vehicle spacing, and vehicle speed. Continue to check traffic thoroughly in all directions. When exiting the expressway: Make necessary traffic checks. Use proper signals. Decelerate smoothly in the exit lane. Once on the exit ramp, you must continue to decelerate within the lane markings and maintain adequate spacing between your vehicle and other vehicles. #### 13.1.6 - Stop/Start For this maneuver, you will be asked to pull your vehicle over to the side of the road and stop as if you were going to get out and check something on your vehicle. You must check traffic thoroughly in all directions and move to the right-most lane or shoulder of road. As you prepare for the stop: Check traffic. Activate your right turn signal. Decelerate smoothly, brake evenly, change gears
as necessary. Bring your vehicle to a full stop without coasting. #### Once stopped: Vehicle must be parallel to the curb or shoulder of the road and safely out of the traffic flow. Vehicle should not be blocking driveways, fire hydrants, intersections, signs, etc. Cancel your turn signal. Activate your four-way emergency flashers. Apply the parking brake. Move the gear shift to neutral or park. Remove your feet from the brake and clutch pedals. When instructed to resume: Check traffic and your mirrors thoroughly in all directions. Turn off your four-way flashers. Activate the left turn signal. When traffic permits, you should release the parking brake and pull straight ahead. Do not turn the wheel before your vehicle moves. Check traffic from all directions, especially to the left. Steer and accelerate smoothly into the proper lane when safe to do so. Once your vehicle is back into the flow of traffic, cancel your left turn signal. #### 13.1.7 - Curve When approaching a curve: Check traffic thoroughly in all directions. Before entering the curve, reduce speed so further braking or shifting is not required in the curve. Keep vehicle in the lane. Continue checking traffic in all directions. #### 13.1.8 - Railroad Crossing **Before** reaching the crossing, all commercial drivers should: Decelerate, brake smoothly, and shift gears as necessary. Look and listen for the presence of trains. Check traffic in all directions. **Do not** stop, change gears, pass another vehicle, or change lanes while any part of your vehicle is in the crossing. If you are driving a bus, a school bus, or a vehicle displaying placards, you should be prepared to observe the following procedures at every railroad crossing (unless the crossing is exempt): As the vehicle approaches a railroad crossing, activate the four-way flashers within 100 to 500 feet of the rail. Stop the vehicle within 50 feet but not less than 15 feet from the nearest rail. Listen and look in both directions along the track for an approaching train and for signals indicating the approach of a train. If operating a bus, you may also be required to open the window and door prior to crossing tracks. Keep hands on the steering wheel as the vehicle crosses the tracks. Do not stop, change gears, or change lanes while any part of your vehicle is proceeding across the tracks. Do not drive across the tracks with the bus door open. Four-way flashers should be deactivated after the vehicle crosses the tracks. Continue to check mirrors and traffic. Not all driving road test routes will have a railroad crossing. You may be asked to explain and demonstrate the proper railroad crossing procedures to the examiner at a simulated location. #### 13.1.9 - Bridge/Overpass/Sign After driving under an overpass, you may be asked to tell the examiner what the posted clearance or height was. After going over a bridge, you may be asked to tell the examiner what the posted weight limit was. If your test route does not have a bridge or overpass, you may be asked about another traffic sign. When asked, be prepared to identify and explain to the examiner any traffic sign which may appear on the route. #### 13.1.10 – Student Discharge (School Bus) If you are applying for a School Bus endorsement, you will be required to demonstrate loading and unloading students. Please refer to section 10 of this manual for procedures on loading and unloading school students. You will be scored on your overall performance in the following general driving behavior categories: ## 13.1.11 – Clutch Usage (for Manual Transmission) Always use clutch to shift. Double-clutch when shifting. Do not rev or lug the engine. Do not ride clutch to control speed, coast with the clutch depressed, or "pop" the clutch. ## 13.1.12 – Gear Usage (for Manual Transmission) Do not grind or clash gears. Select gear that does not rev or lug engine. Do not shift in turns and intersections. #### 13.1.13 - Brake Usage Do not ride or pump brake. Do not brake harshly. Brake smoothly using steady pressure. #### 13.1.14 - Lane Usage Do not put vehicle over curbs, sidewalks, or lane markings. Stop behind stop lines, crosswalks, or stop signs. Complete a turn in the proper lane on a multiple lane road (vehicle should finish a left turn in the lane directly to the right of the center line). Finish a right turn in the right-most (curb) lane. Move to or remain in right-most lane unless lane is blocked. #### 13.1.15 - Steering Do not over or under steer the vehicle. Keep both hands on the steering wheel at all times unless shifting. Once you have completed shift, return both hands to the steering wheel. #### 13.1.16 - Regular Traffic Checks Check traffic regularly. Check mirrors regularly. Check mirrors and traffic before, while in and after an intersection. Scan and check traffic in high volume areas and areas where pedestrians are expected to be present. #### 13.1.17 - Use of Turn Signals Use turn signals properly. Activate turn signals when required. Activate turn signals at appropriate times. Cancel turn signals upon completion of a turn or lane change.